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1 Introduction 

Fund flows, performance, and exit are main topics of fund literature.1 However, current models 

are not able to explain or predict many stylized facts of these topics. For example, why are the empirical 

flow-performance sensitivity and convexity nonmonotonic over time? Why is the probability of exiting 

the market still high for very old funds? Also, why are both convex and linear empirical flow-

performance relationship possible? Those models lack the power to explain and predict the above 

stylized facts because they assume (unobservable) constant manager abilities or dynamic manager 

abilities in a linear framework.2 In this paper, we explain and predict, for the first time, these stylized 

facts by allowing dynamic manager abilities in a nonlinear framework. We demonstrate these for risk-

neutral investors and for risk-averse ones. 

Current empirical evidence supports dynamic manager abilities that evolve under complex 

structures. Researchers find that fund performance persists only in the short term [see, for example, 

Carhart (1997), Berk and Tonks (2007), Mamaysky, Spiegel, and Zhang (2007), and Wang (2014)]. 

Besides the effects of the fund industry’s decreasing returns to scale,3 the dynamics of unobservable 

manager abilities are also likely to contribute to the lack of long-term persistence in fund performance. 

Further, current studies show that manager ability to outperform passive benchmarks is affected by 

different factors, such as fund family activities [see, for example, Gaspar, Massa, and Matos (2006), 

Evans (2010), Brown and Wu (2016), Eisele, Nefedova, Parise, and Peijnenburg (2020), and Xu (2022)]; 

changing attention allocation [Kacperczyk, Nieuwerburgh, and Veldkamp (2016)]; changing investment 

strategies [Lynch and Musto (2003)]; managers’ replacements [Dangl, Wu, and Zechner (2008)]; and 

macroeconomic conditions [see, for example, Ferreira, Keswani, Miguel, and Ramos (2012, 2013), 

Kacperczyk, Nieuwerburgh, and Veldkamp (2014), Feldman, Saxena, and Xu (2020), and Feldman and 

Xu (2023a, 2023b)]. Because these factors are dynamic with complex patterns, they drive fund manager 

abilities to change with complex patterns over time. Therefore, to offer more insights to market 

 
1 See, for example, Berk and Green (2004) (BG), Berk (2005), and Berk and van Binsbergen (2015). 
2 Regarding models with constant manager abilities, see for example, Lynch and Musto (2003), BG, Huang, Wei, 
and Yan (2007), Brown and Wu (2016), and Choi, Kahraman, and Mukherjee (2016). Regarding models with 
dynamic manager abilities in a linear framework, see for example, Dangl, Wu, and Zechner (2008), Brown and 
Wu (2013) which is a working paper version of Brown and Wu (2016), and Roussanov, Ruan, and Wei (2020). 
3 Theoretical models, such as those of BG and Pastor and Stambaugh (2012), show that investors invest more 
(less) in the funds that perform better (worse), and this larger (smaller) amount invested increases (decreases) fund 
costs due to decreasing returns to scale, driving down (up) the fund performance in the future. Thus, fund 
performance does not persist. 
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equilibria, we introduce a more general framework when modeling manager abilities. 

We develop a continuous-time framework and model representative (identical) active funds 

with a passive benchmark portfolio. In our baseline model, the active funds’ observable gross alphas 

follow Itô processes, in which instantaneous expected gross alphas (the drift terms) depend on dynamic 

unobservable manager ability levels. These ability levels also follow Itô processes, and their diffusions 

are (locally, imperfectly) correlated with those of funds’ gross alpha processes. New to the literature, 

we allow the coefficients of these processes to change with time, fund prices, and observable economic 

factors, introducing nonlinearity into the framework. This new feature allows us to incorporate 

economic factors when modeling manager abilities and gross alphas, as shown in the implementations 

of our model in the following discussion. Both managers and investors estimate manager abilities by 

observing gross alphas. Due to this nonlinear structure, estimation error (or precision) of inferred 

manager abilities and sensitivities of inferred manager abilities to new observations of fund gross alphas 

change over time nonmonotonically. This nonlinear framework of dynamic abilities is more general and 

offers more insights than current linear frameworks, in which the coefficient are constant parameters.4 

Other features of our model are similar to those in classical models.5 In particular, we assume 

decreasing returns to scale;6 we allow managers to set constant management fees and choose the size 

of wealth they actively manage; and we assume that fund managers and investors are rational and 

symmetrically informed. In our baseline model, we assume risk-neutral investors.7 Then, we model the 

equilibrium for mean-variance risk-averse investors, also new to the literature. 

Our nonlinear framework of dynamic abilities derives equilibrium flow-performance sensitivity 

and convexity that change nonmonotonically over time.8 Thus, our framework can explain and predict 

nonmonotonicities in empirical flow-performance sensitivity and convexity due to different economic 

reasons. Linear frameworks of manager abilities that are used in current literature cannot generate these 

results. In these linear frameworks, sensitivities of inferred manager abilities to new realizations of fund 

returns change over time monotonically, driving the flow-performance sensitivity and convexity to 

 
4 Linear filtering techniques are used in solving the learning processes of linear frameworks of dynamic abilities, 
whereas nonlinear filtering techniques are needed in solving the learning processes of nonlinear frameworks of 
dynamic abilities. 
5 See, for example, BG, Brown and Wu (2016), and Choi, Kahraman, and Mukherjee (2016). 
6 That is, funds’ total costs are increasing and convex in the size of assets under active management. 
7 That is, investors supply capital with infinite elasticity to funds that have positive expected net alphas. 
8 Please see discussions of equilibrium flow-performance relationship in Section 2.3. 
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change monotonically over time. 

We also study the case of mean-variance risk-averse investors who maximize their portfolios’ 

instantaneous Sharpe ratios. These investors’ optimal portfolios are the same as those of investors with 

Bernoulli logarithmic preferences and are “growth optimal” [see, for example, Feldman (1992)].9 We 

show that investors’ risk aversion affects the dollar amounts of investment flows; when we calculate 

fund flows as percentage flows, effects of investors’ risk aversion cancel out.10 Thus, equilibrium flow-

performance sensitivities and convexities when investors are mean-variance risk-averse are similar to 

those when investors are risk-neutral. 

We derive funds’ exit probability in the next instant and at any future time. A fund exits the 

market if the manager’s inferred ability falls below an exogenous “survival level.” Our nonlinear 

framework of dynamic ability predicts that a fund’s exit probability changes with both time and fund 

size (as equilibrium fund size is a function of inferred ability), at any fund age level. In contrast, in a 

linear framework, when a fund gets old (time goes to infinity) and precision of inferred ability achieves 

the steady state, the fund’s exit probability changes only with inferred ability, and consequently changes 

only with fund size. As old funds usually have large sizes, a linear framework would predict a very low 

exit probability for old funds. Further, under constant manager ability, as in BG for example, an old 

fund’s exit probability is zero because the inferred ability converges to the constant true ability above 

the survival level. Therefore, our nonlinear framework better explains the real-world large exit 

probability of funds and the patterns of exit probability, especially for old funds. 

Implementations of Our Frameworks 

In Section 4.1, we study endogenous matching for managers of funds of funds, venture capital 

funds, and private equity funds. We identify “optimal growth portfolios” for these managers, who 

maximize instantaneous portfolio mean return to variance ratios, and we can model the effects of 

various economic factors on these ratios. In Sections 4.2, 4.3, and 4.4, we specialize our framework in 

 
9 This “growth optimal” result was independently discovered by Bernoulli in 1738 [Bernoulli (1954)] and by the 
“Kelly Criterion” [Kelly (1956)]. Further, this criterion might be seen as active managers’ “horizon” choice for 
investors with potentially heterogeneous horizons and as resolving/avoiding the time inconsistency of mean-
variance preferences. See Basak and Chabakauri (2010) and Feldman and Leisen (2021). 
10 Risk-averse investors maximize the instantaneous Sharpe ratios of their portfolios, which contain active funds 
and passive benchmark portfolios. Investors’ risk aversion affects the equilibrium portfolio weights allocated to 
the active funds and, consequently, affects the equilibrium fund sizes and changes in fund sizes. The percentage 
flow is the change with fund size divided by fund size, and the effects of investors’ risk aversion on the numerator 
and on the denominator cancel out. 
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three ways and demonstrate how each—cross-fund subsidization, manager replacement, and 

competition by new entrants—affects manager abilities and gross alphas, and consequently how each 

induces nonmonotonic flow-performance sensitivities and convexities and time-varying exit 

probabilities.11,12 

Empirical study 

Using the U.S. active equity mutual fund data of the Center for Research in Security Prices 

(CRSP), we empirically test our model’s predictions, setting funds’ “time” to be their age. We find that 

flow-net alpha sensitivity and convexity, on average, change with fund age nonmonotonically:  first 

decrease, then increase, decrease, and finally increase. The detected decrease in flow-net alpha 

sensitivity and convexity in the early years for an average fund arises mainly because investors have 

more and more precise estimates of manager abilities as the number of observations increases, making 

inferred manager abilities less and less sensitive to funds’ performances. The fluctuations of flow-net 

alpha sensitivity and convexity in the later years might be caused by multiple forces. For instance, 

Gaspar, Massa, and Matos (2006) and Eisele, Nefedova, Parise, and Peijnenburg (2020) show that fund 

families transfer returns from old funds to young funds to improve family profit.13 Thus, a fund might 

receive return transfer when it is young and provide such transfer when it gets older, making its gross 

alpha sensitivity to manager ability increase and then decrease.14 Also, Dangl, Wu, and Zechner (2008) 

show that a manager replacement should be preceded by a portfolio risk increase and followed by a 

portfolio risk decrease, and these patterns are also affected by the length of the manager’s tenure. In 

reality, a fund replaces and tenures managers over time, making its gross alpha volatility fluctuate. The 

above forces, and other economic forces that create time-nonmonotonic gross alpha sensitivity to 

manager ability, gross alpha volatility, and sensitivity of inferred manager ability to fund performance, 

make the flow-net alpha sensitivities and convexities change nonmonotonically with fund age. 

 
11 Please see implementations in Section 4 and how they relate to current literature, such as Gaspar, Massa, and 
Matos (2006), Evans (2010), Eisele, Nefedova, Parise, and Peijnenburg (2020), and Xu (2022) regarding cross-
fund subsidization; Dangl, Wu, and Zechner (2008) regarding manager replacement; and Wahal and Wand (2011) 
regarding competition induced by new mutual funds. 
12 We choose these factors, suggested in current literature, and specialize our more general framework with each 
of them to gain corresponding insights. Our framework can incorporate effects of other economic factors into the 
evolutions of manager ability and gross alpha production. We leave these implementations for future studies. 
13 These papers argue that a fund that receives (provides) return transfer performs better (worse), inducing larger 
(smaller) fund size and profit. If the increase in the receiver’s profit overwhelms the decrease in the provider’s 
profit, the family’s total profit is improved. 
14 If a fund receives (provides) return transfer, it produces, for the same level of manager ability, larger (smaller) 
gross alpha to investors. 
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We also estimate the flow-net alpha sensitivity and convexity for each individual fund and find 

nonmonotonicities in these sensitivities and convexities for many funds. The above empirical results 

are sufficient to support our nonlinear framework rather than linear ones. 

Our results of nonmonotonic flow-net alpha sensitivities and convexities are robust after 

controlling for factors affecting flow-net alpha relationship shown in the literature, such as fund size 

[Brown and Wu (2016)], states of market return [Franzoni and Schmalz (2017)], cross-sectional net 

alpha dispersion [Harvey and Liu (2019)], fund volatility [Huang, Wei, and Yan (2021)], and economic 

policy uncertainty [Jiang, Starks, and Sun (2021)]. Therefore, we demonstrate that besides these factors, 

dynamics of manager ability and nonlinear association of manager ability and gross alpha induced by 

unexplored factors and latent factors are relevant forces driving the flow-performance relationship. 

We also empirically analyze funds’ exit probabilities, finding that survival rates for old funds 

decrease with their age. For example, the probability for a fund to survive in the next two years when it 

is 25 years old is 97.25%, but only 95.56% when it is 40 years old. Also, in our logit model, we find 

that the probability that a fund exits in the next month decreases with fund size and increases with fund 

age, not only in the whole sample but also in subsamples of old funds. Thus, older funds are more likely 

to exit the market. The reason might be that, over time, new entrants use portfolio strategies similar to 

those of incumbents, intensifying market competition [see, for example, Wahal and Wand (2011)] and 

exerting negative impacts on the tendency of incumbents’ abilities to outperform the market. This 

finding can be systematically explained by our nonlinear framework, and our study complements the 

literature of fund exit. 

More on the literature and our findings 

Our paper highly relates to theoretical literature of flow-performance relationship. With specific 

coefficient values, our model degenerates to a continuous-time analog of the BG model, recreating all 

BG model’s insights in a dynamic context. Also, for specific coefficient values, the flow-performance 

relationship in our model degenerates to the single-fund versions in Brown and Wu (2016) and Choi, 

Kahraman, and Mukherjee (2016). 

Also, there is active discussion in current literature on the curvature of flow-performance 

relationship, which has relevant implications to the fund industry.15 For example, Lynch and Musto 

 
15 This curvature, for example, shows how investors respond to fund performances (BG), acts as a foundation for 
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(2003), BG, and Brown and Wu (2016) suggest that this relationship is convex, whereas Spiegel and 

Zhang (2013) suggest that this relationship is linear. Our study complements this discussion by showing 

that the intercept, slope, and curvature of the flow-performance relationship can change over time 

nonmonotonically. Consequently, empirical flow-performance relationship may exhibit linearity or 

convexity. In the real world, both cross-sectional heterogeneity and time dynamics of flow-performance 

relationship affect empirical results; thus, both patterns should be considered. 

Franzoni and Schmalz (2017) find that the flow-performance sensitivity is less steep when the 

market excess return is more extreme. They theoretically show that if investors need to learn both the 

manager skill and the loading of the fund portfolio on the market factor, then fund performance is less 

informative about manager skill when market factor realizations are larger in absolute value, resulting 

in “hump-shape” flow-performance sensitivity. However, their model can predict this sensitivity for 

funds only in their earliest ages because, as Franzoni and Schmalz (2017) point out, the posterior 

estimates of skill and factor loading become correlated after some periods, eliminating and even 

reversing the “hump shape.” In our model, if fund gross alphas are less sensitive to manager abilities 

under extreme market conditions,16 then investors reduce their reactions to fund returns, decreasing 

flow-performance sensitivities. This result holds at any fund age level. Therefore, our model explains 

and predicts the “hump-shape” flow-performance sensitivity in a more consistent way, and more so for 

older funds. 

There is also a discussion in the literature of how funds’ marketing activities affect flow-

performance relationship. For example, Huang, Wei, and Yan (2007) find that funds with marketing 

activities exhibit a less convex flow-performance relationship. They theoretically show that as funds 

with marketing activities reduce investors’ participation costs, new investors’ requirements for fund 

performance are lower, making fund flows more sensitive to low or medium fund performance. We 

show, different from Huang, Wei, and Yan’s (2007) insights, that if marketing activities induce higher 

management fees and/or improve investors’ estimates of manager abilities over time, then equilibrium 

flow-performance convexities are lower. 

 
theoretical models of inter-fund competition [Spiegel and Zhang (2013)], and has implications to runs in funds 
and stability in the fund market [Jin, Kacperczyk, Kahraman, and Suntheim (2022)]. 
16 This assumption seems realistic because during periods with extreme market conditions, the security market 
liquidity and volatility, which are relevant to alpha production, are more uncertain, making funds’ gross alphas 
less sensitive to manager abilities but more dependent on “luck”. 
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Our paper also relates to other recent papers on fund flows, performance, size, and asset classes 

[Bollen (2007), Chen, Goldstein, and Jiang (2010), Chen, Hong, Huang, and Kubik (2004), Jin, 

Kacperczyk, Kahraman, and Suntheim (2022), Rakowski (2010), and Yan (2008)]. 

Contribution 

We contribute to the literature, first, by introducing a model of dynamic unobservable manager 

abilities under a nonlinear framework, which better explains the real-world nonmonotonic time-varying 

flow-performance sensitivities and convexities, and better explains effects of fund size and fund age on 

exit probabilities, especially for old funds. Current theories model manager abilities in linear 

frameworks; thus, they cannot predict these results, lacking explanatory power.17 Second, we provide 

empirical evidence that supports our nonlinear framework of dynamic unobservable manager abilities. 

Third, our model offers new insights into empirical findings in the current literature, including the 

complex curvature of flow-performance relationship, the “hump-shape” flow-performance sensitivity, 

and the findings that marketing activities induce smaller flow-performance convexity. 

Section 2 introduces our model and derives flow-performance relationship. Section 3 analyzes 

funds’ exit probabilities. Section 4 provides implementations of nonlinear frameworks that incorporate 

specific economic factors. Section 5 illustrates our empirical study. Section 6 discusses our model’s 

insights into current empirical phenomena, and Section 7 concludes. 

2 The Model 

We introduce a rational equilibrium framework, studying how nonlinear dynamics of 

unobservable manager abilities affect equilibrium flow-performance relationship and funds’ exit 

probabilities. Some of our settings are similar to those of BG, Brown and Wu (2016), and Choi, 

Kahraman, and Mukherjee (2016). 18  We use a two-fund setting, i.e., investors can invest in a 

representative active fund that has one manager and in a passive benchmark portfolio.19  Within a 

 
17 For example, Brown and Wu (2013), an earlier working paper version of Brown and Wu (2016), and Dangl, 
Wu and Zechner (2008) model dynamic unobservable managing ability under linear frameworks. Their models 
can explain only a monotonic time-varying pattern of flow-performance sensitivity and convexity and can predict 
only the relationship of the probability of fund exit and fund size for old funds. 
18 Similar to BG, Brown and Wu (2016) and Choi, Kahraman, and Mukherjee (2016), we assume that participants 
in the model are symmetrically informed. Also, the model is partial equilibrium. Managers’ actions do not affect 
the passive benchmark returns, and we do not model the source of managers’ abilities to outperform the passive 
benchmark portfolio. 
19 This setting is also similar to those in Wei, and Yan (2007), and Lynch and Musto (2003). This two-fund model 
can be extended to a multiple-fund model in which investors invest in 𝑛 (𝑛 ≥ 2) active funds and a passive 
benchmark portfolio. 
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continuous-time framework, we study the market over a time interval, at times 𝑡, 𝑡 ∈ [0,𝑇], where 𝑇, 𝑇 > 0, is a constant, and allowed to be sufficiently large (i.e., 𝑇 → ∞) when we study the steady state 

if it exists under particular conditions. 

2.1 Observable Returns and Unobservable Manager Ability: Nonlinear Filtering 

Let 𝜉௧ , 0 ≤ 𝑡 ≤ 𝑇  be the active fund’s gross share price, before fund costs and fees,20  so 𝑑𝜉௧/𝜉௧ is the instantaneous fund gross return. For simplification, we assume that this active fund has a 

beta loading of one on a passive benchmark portfolio. Focusing on the active fund’s return, as previous 

models,21 we normalize the passive benchmark portfolio’s return to zero, so funds’ instantaneous gross 

returns in excess of the passive benchmark is 𝑑𝜉௧/𝜉௧ − 0 = 𝑑𝜉௧/𝜉௧. Hereafter, we briefly call 𝑑𝜉௧/𝜉௧ 
gross alpha. 

The active fund’s gross alphas depend on the fund manager’s instantaneous ability, 𝜃௧, 0 ≤𝑡 ≤ 𝑇, to beat the benchmark. We briefly call it manager ability. Manager abilities are unobservable for 

both managers and investors. Managers and investors learn about 𝜃௧ by observing evolutions of gross 

alphas 𝑑𝜉௦/𝜉௦, 0 ≤ 𝑠 ≤ 𝑡 (or equivalently by observing gross fund share prices 𝜉௦, 0 ≤ 𝑠 ≤ 𝑡). We 

assume a complete probability space ሺΩ,ℱ,ℙሻ, with filtration ሼℱ௧ሽ଴ஸ௧ஸ் and adapt two independent 

Wiener processes, 𝑊ଵ,௧  and 𝑊ଶ,௧ , 0 ≤ 𝑡 ≤ 𝑇 , to this filtration. The unobservable 𝜃௧  and the 

observable 𝜉௧  evolve as follows. 

 𝑑𝜃௧ = [𝑎଴ሺ𝑡, 𝜉௧ሻ + 𝑎ଵሺ𝑡, 𝜉௧ሻ𝜃௧]𝑑𝑡 + 𝑏ଵሺ𝑡, 𝜉௧ሻ𝑑𝑊ଵ,௧ + 𝑏ଶሺ𝑡, 𝜉௧ሻ𝑑𝑊ଶ,௧ , (1) 

 𝑑𝜉௧𝜉௧ = 𝐴ሺ𝑡, 𝜉௧ሻ𝜃௧𝑑𝑡 + 𝐵ሺ𝑡, 𝜉௧ሻ𝑑𝑊ଶ,௧ , (2) 

with initial conditions 𝜃଴  and 𝜉଴ , respectively. The functions 𝑎଴ሺ𝑡, 𝜉௧ሻ , 𝑎ଵሺ𝑡, 𝜉௧ሻ , 𝑏ଵሺ𝑡, 𝜉௧ሻ , 𝑏ଶሺ𝑡, 𝜉௧ሻ , 𝐴ሺ𝑡, 𝜉௧ሻ , and 𝐵ሺ𝑡, 𝜉௧ሻ  are of 𝑡  and 𝜉௧ , and we assume 𝐴ሺ𝑡, 𝜉௧ሻ > 0 , 𝑏ଵሺ𝑡, 𝜉௧ሻ > 0 , and 𝐵ሺ𝑡, 𝜉௧ሻ > 0. The evolution processes (“laws of motion”), functional forms, and coefficient values are 

common knowledge. 

The above setting implies that, first, abilities, 𝜃௧, to beat the benchmark follow a nonlinear 

dynamic process. Second, funds’ gross alphas, 𝑑𝜉௧/𝜉௧, depend on manager abilities and on random 

shocks. As 𝐴ሺ𝑡, 𝜉௧ሻ > 0, managers with higher ability tend to create higher fund gross alphas, and the 

larger 𝐴ሺ𝑡, 𝜉௧ሻ is, the higher the gross alpha sensitivities to abilities. 𝐵ሺ𝑡, 𝜉௧ሻ positively corresponds 

 
20 In the real world, fund costs and fees are usually paid separately when investors buy and/or redeem fund shares. 
21 See, for example, Huang, Wei, and Yan (2007). 
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to gross alpha volatility. Third, when 𝑏ଶሺ𝑡, 𝜉௧ሻ is strictly positive (negative), the shock 𝑊ଶ,௧ affects 

both ability and fund gross alpha, making them instantaneously positively (negatively) correlated as 𝑏ଶሺ𝑡, 𝜉௧ሻ𝐵ሺ𝑡, 𝜉௧ሻ > 0  (𝑏ଶ(𝑡, 𝜉௧ሻ𝐵(𝑡, 𝜉௧ሻ < 0) . When 𝑏ଶ(𝑡, 𝜉௧) = 0  and 𝑏ଵ(𝑡, 𝜉௧) > 0 , ability and 

gross alpha are affected by independent shocks, so they are instantaneously uncorrelated. A larger 

absolute value of 𝑏ଶ(𝑡, 𝜉௧) relative to that of 𝑏ଵ(𝑡, 𝜉௧) implies that gross alpha and ability are more 

highly correlated in absolute sense. 

Allowing coefficient to be functions of 𝑡 and 𝜉௧ is a new feature that differentiates our model 

from those in the current literature. Due to this setting, we can incorporate effects of economic factors 

on the tendency of fund manager abilities, the correlations of manager abilities and gross alphas, and 

the volatility of manager performances.22  To facilitate our discussions, we keep using the general 

notations of Equations (1) and (2) in Sections 2 and 3 when deriving our equilibrium results. In Section 

4, we specialize our framework and incorporate effects of economic factors, such as cross-fund 

subsidization, manager replacement, and competition induced by new entrants, on manager abilities 

and gross alpha productions and offer additional economic rationale for our framework. 

To facilitate our analysis, we define the following terms: 

• ℱ௧క ≜  the 𝜎 -algebras generated by ሼ𝜉௦, 0 ≤ 𝑠 ≤ 𝑡ሽ , with ቄℱ௧కቅ଴ஸ௧ஸ்  as the corresponding 

filtration over 0 ≤ 𝑡 ≤ 𝑇. 

• 𝑚௧ ≜ the mean of 𝜃௧ conditional on the observations 𝜉௦, 0 ≤ 𝑠 ≤ 𝑡, i.e., 𝑚௧ ≜ E ቀ𝜃௧|ℱ௧కቁ. 

• 𝛾௧ ≜ the variance of 𝜃௧ conditional on the observations 𝜉௦, 0 ≤ 𝑠 ≤ 𝑡, i.e., 𝛾௧ ≜ E ቂ(𝜃௧ − 𝑚௧)ଶ|ℱ௧కቃ. 
We assume that the conditional distribution of 𝜃଴,  given 𝜉଴  (the prior distribution) is Gaussian, 𝑁(𝑚଴, 𝛾଴), with finite values of 𝜉଴, 𝑚଴, and 𝛾଴. 

Observing 𝜉௧, managers and investors update their estimates of 𝜃௧ in a Bayesian fashion.23 

 
22 In this setting, we can model these coefficients to change not only with time and fund share price, but also with 
observable economic factors because 𝜉௧ can be an observable vector containing fund share price and additional 
economic factors, such as macroeconomic variables. 
23 Such a model is presented in Liptser and Shiryaev (2001a, Ch. 8; 2001b, Ch. 12). These techniques are called 
optimal filtering and are used in numerous previous studies [see, for example, Dothan and Feldman (1986), 
Detemple (1986), Feldman (1989, 2007), Berk and Stanton (2007), Dangl, Wu, and Zechner (2008), and Brown 
and Wu (2013, 2016)]. 
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Let ℱ௧కబ,ௐഥ , 0 ≤ 𝑡 ≤ 𝑇, be the 𝜎-algebras generated by ሼ𝜉଴, 𝑊ഥ௦, 0 ≤ 𝑠 ≤ 𝑡ሽ, where 

 𝑊ഥ௧ = න 𝑑𝜉௦(𝑠, 𝜉௦)/𝜉௦(𝑠, 𝜉௦) − 𝐴(𝑠, 𝜉௦)𝑚௦(𝑠, 𝜉௦)𝑑𝑠𝐵(𝑠, 𝜉௦)௧
଴  (3) 

is a Wiener process with respect to the filtration ቄℱ௧కቅ଴ஸ௧ஸ், with 𝑊ഥ଴ = 0. Then, the 𝜎-algebras ℱ௧క  

and ℱ௧కబ,ௐഥ  are equivalent. 𝑊ഥ௧ innovates the observable conditional mean, 𝑚௧, of the unobservable 

ability, 𝜃௧. The variables 𝑚௧, 𝜉௧, and 𝛾௧ are the unique, continuous, ℱ௧క-measurable solutions of the 

system of equations 

 𝑑𝑚௧ = [𝑎଴(𝑡, 𝜉௧) + 𝑎ଵ(𝑡, 𝜉௧)𝑚௧]𝑑𝑡 + 𝜎௠(𝛾௧)𝑑𝑊ഥ௧ , (4) 

 𝑑𝜉௧𝜉௧ = 𝐴(𝑡, 𝜉௧)𝑚௧𝑑𝑡 + 𝐵(𝑡, 𝜉௧)𝑑𝑊ഥ௧ , (5) 

 𝑑𝛾௧ = [𝑏ଵଶ(𝑡, 𝜉௧) + 𝑏ଶଶ(𝑡, 𝜉௧) + 2𝑎ଵ(𝑡, 𝜉௧)𝛾௧ − 𝜎௠ଶ (𝛾௧)]𝑑𝑡, (6) 

where 

 𝜎௠(𝛾௧) ≜ 𝑏ଶ(𝑡, 𝜉௧)𝐵(𝑡, 𝜉௧) + 𝐴(𝑡, 𝜉௧)𝛾௧𝐵(𝑡, 𝜉௧) , (7) 

with initial conditions 𝜉଴ , 𝑚଴ , and 𝛾଴ . The random process (𝜃௧ , 𝜉௧) , 0 ≤ 𝑡 ≤ 𝑇  is conditionally 

Gaussian given ℱ௧క .24 

The Wiener process 𝑊ഥ௧  represents the innovation shocks to estimates of managers’ 

unobservable abilities. The processes (𝜉௧ ,𝑊ഥ௧) or equivalently (𝜉௧ ,𝑚௧ , 𝛾௧) provide same information 

as (𝜉௧ ,𝜃௧) over 0 ≤ 𝑡 ≤ 𝑇.25 Hence, investors’ original non-Markovian problem can be stated as an 

equivalent Markovian one, which allows state vector solution.26 To make economic sense, we assume 

a nonnegative 𝑏ଶ(𝑡, 𝜉௧), which ensures a positive 𝜎௠(𝛾௧) in Equation (4). That is, a positive (negative) 

corresponding shock in fund gross alpha induces an increase (a decrease) in inferred manager ability. 

The intuition regarding our ability to solve the above nonlinear system and the nature of its 

equilibrium is as follows. Because time and fund share price levels are observable, at each time point 

the coefficients, 𝑎଴(𝑡, 𝜉௧) , 𝑎ଵ(𝑡, 𝜉௧) , 𝑏ଵ(𝑡, 𝜉௧) , 𝑏ଶ(𝑡, 𝜉௧) , 𝐴(𝑡, 𝜉௧) , and 𝐵(𝑡, 𝜉௧) , conditional on 𝜉௧ 
realizations become known constants, thus inducing a Gaussian distribution for manager ability. In the 

 
24 Equations (3)–(7) are demonstrated in Theorem 8.1 of Liptser and Shiryaev (2001a), Theorems 11.1, and 12.5 
of Liptser and Shiryaev (2001b). These results require regular technical conditions regarding the smoothness and 
boundedness of the coefficient values over the period 0 ≤ 𝑡 ≤ 𝑇 . See these technical requirements in the 
corresponding theorems in Liptser and Shiryaev (2001a, 2001b). 
25 Please recall that 𝜃௧ is unobservable. 
26 While there was wide use of a linear version of this filter [see, for example, the literature review in Feldman 
(2007)], to the best of our knowledge, this is the first use of continuous-time nonlinear filtering in finance. 
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next time instant, realized 𝜉௧  stochastically change. Consequently, the coefficients stochastically 

change as well, inducing a “new” Gaussian conditional distribution of manager ability. 

We note that each set of ability distribution parameter values, valid at a certain time point, 

induces a future evolution path. As the moments of the ability-conditional distributions evolve 

stochastically, we can think of the equilibrium as stochastically time traveling among these evolution 

paths, each induced by one set of parameter values. The Internet Appendix offers detailed discussions 

of how we solve this nonlinear system and how this system differs from linear systems used by classical 

models such as BG. Hereafter, we call our framework a nonlinear dynamic ability framework, call the 

framework in which 𝑎଴ 𝑎ଵ, 𝑏ଵ, 𝑏ଶ, 𝐴, and 𝐵 are constants a linear dynamic ability framework, and 

call the BG case, a linear constant ability framework. 

Then, in our model, investors make their optimal decisions in two steps. First, by observing the 

evolution of the fund’s share price 𝜉௧, they generate Markovian posterior conditional moments of the 

fund manager ability 𝜃௧, converting the problem from a non-Markovian one to an equivalent tractable 

Markovian one. Second, they use their posterior estimate 𝑚௧ to predict future funds’ gross alpha, as 

shown by Equation (5).27 They use these predictions in solving their investors’ problem, as shown in 

the next sections. 

2.2 Investors’ Optimization and the Fund Manager’s Optimization 

Using the above filter to re-represent the state space ሼ𝜃௧ , 𝜉௧ሽ in terms of observable variables ሼ𝜉௧ ,𝑚௧ , 𝛾௧ሽ, we can solve the optimization problems of investors and the fund manager. 

There are infinitely many small risk-neutral investors in the market, and each investor’s 

investment decision does not affect funds’ returns and sizes, although all investors together do affect 

these. Investors’ portfolio returns depend on three components:  gross alphas, fees, and fund costs. BG 

show that the case in which fund managers actively manage funds choosing management fees 𝑓௧ at 

each time 𝑡 is equivalent to fund managers choosing sizes of funds they actively manage at each time 𝑡, charging fixed management fees 𝑓. As the latter case is more realistic, we focus on it to conduct our 

analysis. 

At time 𝑡, a fund’s costs variable 𝐶(𝑞௧௔) is a function of the fund’s actively managed amount 

 
27 Notice that in these optimization processes, the unobservable manager ability 𝜃௧ is replaced by its observable 
inferred estimate 𝑚௧, which is also updated as a function of the stochastic conditional variance 𝛾௧, representing 
the imprecision of the estimate. Further, all decisions involving the inferred abilities, 𝑚௧, become functions of 
their imprecision, 𝛾௧, as well. 
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𝑞௧௔. Out of the 𝑞௧, the total fund assets, the amount 𝑞௧ − 𝑞௧௔ (𝑞௧ − 𝑞௧௔ ≥ 0) is invested in the passive 

index, earning the passive benchmark portfolio return and inducing no costs. There are decreasing 

returns to scale at the fund level, similar to BG, Feldman, Saxena, and Xu (2020), and Feldman and Xu 

(2023a, 2023b). Thus, 𝐶(𝑞௧௔) is increasing and convex in 𝑞௧௔, and we assume 𝐶(𝑞௧௔) = 𝑐𝑞௧௔ଶ, (8) 

where a known constant 𝑐, 𝑐 > 0 is the fund cost sensitivity to size. 

At time 𝑡, let price of the active fund’s asset under management, net of fund costs and fees, be 𝑆௧, 0 ≤ 𝑡 ≤ 𝑇. Then, the active fund’s net return is 𝑑𝑆௧/𝑆௧. As we normalize the passive benchmark 

portfolio’s return to zero, the active fund’s net return in excess of the passive benchmark is 𝑑𝑆௧/𝑆௧ −0 = 𝑑𝑆௧/𝑆௧. Hereafter, we briefly call 𝑑𝑆௧/𝑆௧ net alpha. Then, 

 𝑑𝑆௧𝑆௧ = 𝑞௧௔𝑞௧ 𝑑𝜉௧𝜉௧ − 𝐶(𝑞௧௔)𝑞௧ 𝑑𝑡 − 𝑓𝑑𝑡. (9) 

Similar to BG, we assume that risk-neutral investors supply capital with infinite elasticity to 

funds that have positive excess expected returns, driving the conditional expectation of fund net alpha 

to zero at each time 𝑡, 
 E ൤𝑑𝑆௧𝑆௧ ฬ ℱ௧క൨ = 0,  ∀𝑡. (10) 

Taking conditional expectation on Equation (9) and setting it to zero, we have 

 𝑞௧௔𝑞௧ 𝐴(𝑡, 𝜉௧)𝑚௧ − 𝑐𝑞௧௔ଶ𝑞௧ − 𝑓 = 0. (11) 

Rearranging, 

 𝑓𝑞௧ = 𝐴(𝑡, 𝜉௧)𝑚௧𝑞௧௔ − 𝑐𝑞௧௔ଶ. (12) 

Managers maximize fund profit 𝑓𝑞௧ by choosing 𝑞௧௔. Then, managers’ problem is 

 max௤೟ೌ 𝑓𝑞௧ = max௤೟ೌ 𝐴(𝑡, 𝜉௧)𝑚௧𝑞௧௔ − 𝑐𝑞௧௔ଶ (13) 

subject to 

 0 ≤ 𝑞௧௔ ≤ 𝑞௧ .  (14) 

2.3 The Flow-Performance Relationship 

As in BG, we define 𝑚௧, such that if 𝑚௧ < 𝑚௧, the fund receives no investments and exits the 

market. We call 𝑚௧  the survival ability level and assume 𝑚௧ ≥ 0 , although our results hold for 
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unrestricted 𝑚௧ values.28,29 The optimal amount under active management and the optimal total assets 

under management, 𝑞௧௔∗ and 𝑞௧∗, are not trivial where 𝑚௧ > 𝑚௧ ≥ 0; otherwise, they both are zero. 

Also, we assume that the manager would set the fee 𝑓  so that 𝑞௧௔∗ ≤ 𝑞௧∗ , as BG assume. Solving 

investors’ and managers’ problems, we have 

 𝑞௧௔∗ = 𝐴(𝑡, 𝜉௧)𝑚௧2𝑐  (15) 

 𝑞௧∗ = [𝐴(𝑡, 𝜉௧)𝑚௧]ଶ4𝑐𝑓 . (16) 

We calculate 𝑑𝑞௧∗ and divide it by 𝑞௧∗ to get the equilibrium percentage fund flows.30 Then, 

we have the equilibrium flow-performance relationship shown in the following proposition. 

Proposition RN. Flow-Performance Relationship with Risk-Neutral Investors. 

If 𝑚௧ ≤ 𝑚௧, then the fund receives no investments. If 𝑚௧ > 𝑚௧, where investors are risk-neutral, then 

the equilibrium flow-performance relationship is 

 𝑑𝑞௧∗𝑞௧∗ = 𝐴(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝑓𝐵(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ + 𝐴ଶ(𝑡, 𝜉௧)𝜎௠ଶ (𝛾௧)4𝑓ଶ𝐵ଶ(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ଶ +2 ቈ𝑎଴(𝑡, 𝜉௧)𝑚௧ + 𝑎ଵ(𝑡, 𝜉௧)቉ 𝑑𝑡. 31 
(17) 

Proof. See the Internet Appendix. □ 

Similar to the flow-performance relationship found in the literature, our equilibrium fund flows 

are increasing with and convex in fund performance, and the flow-performance sensitivity and 

convexity decrease with fund fees.32  Equation (17) shows the following new features of the flow-

 
28 That is, 𝑚௧ can be positive, zero, or negative. In practice, usually 𝑚௧ ≥ 0, as explained above. However, if 𝑚௧ < 0, then when 𝑚௧ < 𝑚௧ < 0, funds do not exit the market, and managers need to short their portfolios and 

invest in the benchmark portfolios, making 𝑞௧௔ < 0. When 𝑚௧ ≥ 0 they stop shorting. 
29 We assume 𝑚௧ ≥ 0 because given updated information, expected instantaneous gross alpha accumulated in 𝑑𝑡 is Eቀ𝑑𝜉௧/𝜉௧|ℱ௧కቁ = 𝐴(𝑡, 𝜉௧)𝑚௧𝑑𝑡, with 𝐴(𝑡, 𝜉௧) > 0. If 𝑚௧ < 0, the expected instantaneous gross alpha is 
negative. With positive fund costs and fees, the expected instantaneous net alpha earned by investors in 𝑑𝑡 would 
be substantially smaller than zero, so investors would switch their investments to the passive benchmark portfolio. 
30  We are interested in next instant change with fund flows relative to current fund flows. Conditional on 
observations, 𝐴(𝑡, 𝜉௧) is a constant, and we treat it as such when applying Itô’s Lemma to calculate 𝑑𝑞௧∗. 
31  The term ቀௗௌ೟ௌ೟ ቁଶ  in Equation (17) in its continuous-time limit (the quadratic variation) is, in equilibrium, ቀଶ௙஻(௧,క೟)஺(௧,క೟)௠೟ቁଶ 𝑑𝑡  [see Equation (A6) in the Internet Appendix], suggesting an instantaneous linear flow-
performance sensitivity. However, as investors allocate wealth to funds discretely, Equation (17) implies that flow-
performance sensitivities are convex. 
32 The intuitions of these results are discussed in classical theoretical papers, such as BG. 



 

14 

performance relationship under our nonlinear dynamic ability framework, compared with those found 

in the literature. First, higher sensitivity of expected manager ability to innovation shocks in fund gross 

alpha, 𝜎௠(𝛾௧) , induces higher flow-performance sensitivity. The reason is that a higher 𝜎௠(𝛾௧) 

implies that shocks in fund gross alphas contain more information about manager ability (thus have 

more impact on the expectation of manager ability), making fund flows more sensitive to fund gross 

alphas. Second, higher fund gross alpha volatility 𝐵(𝑡, 𝜉௧) induces lower flow-performance sensitivity. 

This is because a higher 𝐵(𝑡, 𝜉௧) implies that the fund performance contains less information about 

manager ability, so investors rely less on fund performance when learning manager ability, making fund 

flows less sensitive to fund performance. Third, higher sensitivity of fund gross alpha to manager ability, 𝐴(𝑡, 𝜉௧), induces higher flow-performance sensitivity. This is because a higher 𝐴(𝑡, 𝜉௧) implies that 

fund performance is more highly correlated with manager ability in the long term. Consequently, fund 

return observations are more informative for manager ability and future returns, making fund flows 

more sensitive to fund performance. In addition, higher 𝜎௠(𝛾௧), 𝐵(𝑡, 𝜉௧), and 𝐴(𝑡, 𝜉௧) have stronger 

effects on fund flows when fund performance is high, so they affect the flow-performance convexity in 

the same directions as they affect the flow-performance sensitivity. 

More importantly, as 𝜎௠(𝛾௧) , 𝐵(𝑡, 𝜉௧) , and 𝐴(𝑡, 𝜉௧)  change over time nonmonotonically 

under our nonlinear dynamic ability framework, Equation (17) implies that the equilibrium flow-

performance sensitivity and convexity in this framework change with time nonmonotonically. Thus, if 

dynamic economic factors affect the coefficients in our nonlinear framework, Equations (1) and (2), 

then our model explains and predicts the nonmonotonicity of the equilibrium flow-performance 

sensitivities and convexities induced by these economic factors. Section 4 provides implementations of 

our framework to incorporate some of these economic factors. More discussions of our model’s 

explanatory and predictive power are in Section 5, where we illustrate our empirical evidence of flow-

performance relationship, and in Section 6 ,where we offer insights into empirical findings of flow-

performance relationship in the current literature. 

We have the immediate results of the flow-performance relationship under a linear dynamic 

ability framework where coefficients are constants and 𝜎௠(𝛾௧) changes monotonically to its steady 

state, as shown in the following corollary. 

Corollary RN1. Flow-Performance Relationship Under a Linear Dynamic Ability Framework. 
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Under a linear dynamic ability framework, where 𝑎଴  𝑎ଵ , 𝑏ଵ , 𝑏ଶ , 𝐴 , and 𝐵  are constants, 

equilibrium flow-performance sensitivities and convexities monotonically increase or decrease to their 

steady-state values or stay unchanged in the steady-state values. □ 

2.4 Relation to Berk and Green (2004), Brown and Wu (2016), and Choi, Kahraman, and 
Mukherjee (2016) 

BG provide one of the earliest discrete-time models that studies flow-performance relationship 

and offers relevant insights. In their model, manager abilities are unknown constants that investors and 

the fund manager learn by observing fund returns. Our model nests BG in the sense that we can 

degenerate it to a continuous-time analog of it. 

To make the manager ability 𝜃௧  an unobservable constant 𝜃 , we assign the following 

coefficient values. In Equation (1), we set 𝑎଴ = 𝑎ଵ = 𝑏ଵ = 𝑏ଶ = 0. In Equation (2), we set 𝐴 = 1 to 

further simplify our model and match it with BG’s. Then, Equations (7), (4), and (6) become 

 𝜎௠(𝛾௧) = 𝛾௧𝐵  (18) 

 𝑑𝑚௧ = 𝛾௧𝐵ଶ (𝑑𝜉௧𝜉௧ − 𝑚௧𝑑𝑡) (19) 

 𝛾௧ = 𝛾଴𝐵ଶ𝐵ଶ + 𝛾଴𝑡. (20) 

The equilibrium flow-performance relationship becomes 

 𝑑𝑞௧∗𝑞௧∗ = 1𝑓 ൬ 𝛾଴𝐵ଶ + 𝛾଴𝑡൰ ൬𝑑𝑆௧𝑆௧ ൰ + 14𝑓ଶ ൬ 𝛾଴𝐵ଶ + 𝛾଴𝑡൰ଶ ൬𝑑𝑆௧𝑆௧ ൰ଶ. (21) 

This result is valid if 𝑚௧ > 𝑚௧. Otherwise, the fund receives zero investments and 𝑑𝑞௧∗/𝑞௧∗ = 0. 

Proof. See the Internet Appendix. □ 

The flow-performance relationship in Equation (21) is a continuous-time analog of Equation 

(30) in BG33 and is also a special case of our equilibrium flow-performance relationship shown in 

Equation (17). In this case, 𝜎௠(𝛾௧) monotonically decreases to the steady state, zero. Then, we have 

the immediate results of how the equilibrium flow-performance relationship changes over time under a 

linear constant ability framework shown below. 

Corollary RN2. Flow-Performance Relationship Under a Linear Constant Ability Framework. 

Under a linear constant ability framework, such that 𝑎଴ = 𝑎ଵ = 𝑏ଵ = 𝑏ଶ = 0  and 𝐴  and 𝐵  are 

 
33 See the discussion below Equation (30) of BG. 
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constants, the equilibrium flow-performance sensitivity and convexity monotonically decrease to zero.

 □ 

As the above result shows, the equilibrium flow-performance relationship is transient under a 

linearc onstant ability framework. This result also applies to Brown and Wu (2016) and Choi, Kahraman, 

and Mukherjee (2016), which use linear constant ability frameworks to model cross-fund learning 

within fund families.34 These two papers also find that sensitivities of fund flows to fund performances 

decrease monotonically over time, similar to our Corollary RN2. 

However, the result of a linear constant ability framework does not match with empirical data 

because empirically, even for very old funds, fund flows are still sensitive to performance and can 

become more sensitive as fund age increases. Our nonlinear dynamic ability framework does not have 

this limitation because it allows the equilibrium flow-performance sensitivity and convexity to change 

nonmonotonically over time. 

For illustration, we offer simulation results of equilibrium flow-performance sensitivities under 

different frameworks in the Internet Appendix. 

2.5 Mean-Variance Risk-Averse Investors and the Flow-Performance Relationship 

In studying how investors’ risk aversion affects the equilibrium flow-performance relationship, 

we assume that investors are mean-variance risk-averse who maximize their portfolios’ instantaneous 

Sharpe ratios.35 These investors’ optimal portfolios are the same as those of investors with Bernoulli 

logarithmic preferences, who maximize expected utility [see, for example, Feldman (1992)]. Moreover, 

these portfolios are “growth optimal,” as independently discovered by Bernoulli (in 1738) [see 

Bernoulli (1954)] and the “Kelly Criterion” [see Kelly (1956)]. This setting is also similar to the one of 

Pastor and Stambaugh (2012), Feldman, Saxena, and Xu (2020), and Feldman and Xu (2023a). 

 
34 In particular, if there is only one fund in the Brown and Wu (2016) model and in the Choi, Kahraman, and 
Mukherjee (2016) model, i.e., there is no cross-fund learning. Equations (5) and (6) in Brown and Wu (2016) 
become our Equations (19) and (20), whereas Equation (10) in Choi, Kahraman, and Mukherjee (2016) becomes 
a discrete-time analog of our Equation (19). 
35 Sharpe ratio maximization is a common feature while modeling mean-variance risk-averse investors’ behavior. 
Current literature shows that if a fund manager’s compensation is related to his/her portfolio’s Sharpe ratio for a 
particular period, then that manager has incentives for manipulation. The manager can increase (decrease) risk in 
the later part of the period if the return in the early part of the period is low (high) in order to improve the whole 
period’s Sharpe ratio. Alternatively, he/she can trade off the tails of returns’ distributions. In our model, as 
investors act on their own interests, they have no incentives to manipulate their portfolios’ Sharpe ratios. Our 
assumption that investors maximize instantaneous portfolio Sharpe ratios prevents manipulation in our framework. 
See, for example, Ingersoll, Spiegel, and Goetzmann (2007), and Cvitanic, Lazrak, and Wang (2008). 
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Risk-averse investors, requiring compensation for increased risk that comes with excess return, 

do not drive alphas to zero. Thus, we need to change the model to incorporate this. First, we cannot 

normalize the passive benchmark portfolio return to be zero, as the level of this return is relevant.36 

Instead, we define the share price of the passive benchmark portfolio at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇, as 𝜂௧ . The 

passive benchmark portfolio returns, 𝑑𝜂௧/𝜂௧, then follow 

 𝑑𝜂௧𝜂௧ = 𝜇௣𝑑𝑡 + 𝜎௣𝑑𝑊௣,௧ , (22) 

where 𝜇௣ and 𝜎௣ are positive known constants and 𝑊௣,௧ is a Wiener Process. Second, we still define 𝑑𝜉௧/𝜉௧ as the fund gross alpha, which follows the process defined in Equations (1) and (2), and define 𝑑𝑆௧/𝑆௧ as the fund net alpha. As the active fund has beta loading of one on the passive benchmark 

portfolio, the fund gross return is 𝑑𝜉௧/𝜉௧ + 𝑑𝜂௧/𝜂௧ and the fund net return is 𝑑𝑆௧/𝑆௧ + 𝑑𝜂௧/𝜂௧. We 

assume that the risk source of the benchmark return 𝑊௣,௧ is independent of that of gross alphas, so 

 𝑑𝑊௣,௧𝑑𝑊ഥ௧ = 0. (23) 

Third, for simplicity, we normalize the risk-free rate to zero.37 All other terms stay the same. 

Then, the investor’s problem is to maximize the portfolio’s instantaneous Sharpe ratio, 

 max௪೟
E ൤𝑑𝑝௧𝑝௧ ฬ ℱ௧క൨ටVar ൤𝑑𝑝௧𝑝௧ ฬ ℱ௧క൨, (24) 

subject to 

 0 ≤ 𝑤௧ ≤ 1, (25) 

where 𝑤௧ is the weight allocation to the active fund,38 𝑝௧ is the portfolio’s value, and 𝑑𝑝௧/𝑝௧ is the 

portfolio’s instantaneous return. The portfolio’s instantaneous return is 

 𝑑𝑝௧𝑝௧ = 𝑤௧ ൬𝑑𝑆௧𝑆௧ + 𝑑𝜂௧𝜂௧ ൰ + (1 − 𝑤௧)𝑑𝜂௧𝜂௧ = 𝑤௧ 𝑑𝑆௧𝑆௧ + 𝑑𝜂௧𝜂௧ . (26) 

Solving the investor’s problem, we have the optimal weight allocation 𝑤௧∗. As investors face 

the same risk-return tradeoff and have the same objective function, they all make the same optimal 

decision of 𝑤௧∗. We define the part of the total wealth of all investors that is allocated to financial assets 

 
36 As risk-averse investors preferences are defined over their whole portfolios, they do not form their decision 
based on a marginal analysis of the active funds’ risk alone. See, for example, Equations (A20) and (A21) in the 
Internet Appendix, which collapse if the passive benchmark return is normalized to zero. 
37 Alternatively, we can regard ௗఎ೟ఎ೟  as the passive benchmark portfolio return in excess of the risk-free rate. 
38 As the risk-return tradeoff is the same for all investors, they make the same optimal decision in equilibrium, so 
we do not differentiate 𝑤௧ across investors to simplify the notations. 
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(i.e., allocated to the active fund and the passive benchmark portfolio) as 𝑉, 𝑉 ∈ (0, +∞).39 Here, the 

amount of wealth allocated to the fund or fund size is 𝑞௧ = 𝑤௧∗𝑉. As in the risk-neutral case, we can 

write the fund manager's profit as a function of 𝑞௧௔, i.e., 𝑔(𝑞௧௔), where 𝑔 is a (smooth, increasing, 

concave) function shown in the Internet Appendix. 

Then, the manager’s problem is 

 max௤೟ೌ 𝑓𝑞௧ = max௤೟ೌ 𝑔(𝑞௧௔) (27) 

subject to 

 0 ≤ 𝑞௧௔ ≤ 𝑞௧ . (28) 

For brevity we provide the problem solution and the optimal values of 𝑞௧∗  and 𝑞௧௔  in the 

Internet Appendix. The equilibrium flow-performance relationship is in the following proposition. 

Proposition RA. Flow-Performance Relationship with Mean-Variance Risk-Averse Investors. If 𝑚௧ ≤ 𝑚௧, then funds receive no investments from investors. If 𝑚௧ > 𝑚௧, where investors are mean-

variance risk-averse, the equilibrium flow-performance relationship is 

 𝑑𝑞௧∗𝑞௧∗ = 𝐴(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝑓𝐵(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ + 𝐴ଶ(𝑡, 𝜉௧)𝜎௠ଶ (𝛾௧)4𝑓ଶ𝐵ଶ(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ଶ + 𝑌௧𝑑𝑡, (29) 

where 

 𝑌௧ = 2𝑎଴(𝑡, 𝜉௧)𝑚௧ + 2𝑎ଵ(𝑡, 𝜉௧) − 𝐴(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝐵(𝑡, 𝜉௧)𝜇௣𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ . (30) 

Here 𝑌௧ is independent of 𝑑𝑆௧/𝑆௧. 
Proof. See the Internet Appendix. □ 

From Equation (29), we can see that investors’ risk aversion does not affect the flow-

performance sensitivity and convexity. Investors’ risk aversion affects only the components of the fund 

flows that are unrelated to fund performance, as shown in Equations (29) and (30). The intuition is that 

investors’ risk aversion affects investment amounts allocated to the risky active fund, 𝑞௧∗, so it affects 

the dollar amount of fund flows, 𝑑𝑞௧∗. However, when the fund flows are calculated as percentage flow, 𝑑𝑞௧∗/𝑞௧∗ , the effects of risk-aversion cancel out. Therefore, the flow-performance sensitivity and 

 
39 In reality, this amount of wealth not only depends on the returns from financial assets, but also depends on 
production activities, research and development expenditures, consumptions, taxes, and many other aspects of the 
economy that we do not model here. To simplify our analysis, we assume that 𝑉 is exogenous to both investors 
and managers and is a constant. Even if we assume that 𝑉 changes over time, i.e., 𝑉௧, the dynamics of 𝑉௧ does 
not affect the flow-performance sensitivity and convexity. Thus, assuming a dynamic 𝑉௧  does not affect our 
model’s insights. 
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convexity when investors are mean-variance risk averse are similar to those when investors are risk 

neutral. 

The Internet Appendix offers the proofs and discussions of the results in this section. 

3 Funds’ Exit Probability 

Probability of fund exit is important, and our framework facilitates analyzing it. As mentioned 

earlier, we assume that a fund exits the market if the manager’s inferred ability is below a survival 

ability level, i.e., 𝑚௧ < 𝑚௧. To simplify our discussion, we assume that 𝑚௧ is exogenous and constant, 

𝑚௧ = 𝑚. The following proposition gives the probability that a fund exits the market in the forthcoming 

period. 

Proposition FE1. Funds’ Exit Probability in the Forthcoming Period. At time 𝑡, for 𝑚௧ > 𝑚, the 

conditional probability for a fund to exit the market at 𝑡 + 𝑑𝑡 is 

 Prob ቀ𝑑𝑚௧ < 𝑚 −𝑚௧ቚℱ௧కቁ = න eି[௫ି(௔బ(௧,క೟)ା௔భ(௧,క೟)௠೟)ௗ௧]మଶఙ೘మ (ఊ೟)ௗ௧ඥ2𝜋𝜎௠ଶ (𝛾௧)𝑑𝑡
௠ି௠೟
ିஶ 𝑑𝑥. (31) 

Proof. This is directly from the Gaussian distribution of 𝑑𝑚௧ shown in Equation (4). □ 

The probability that a fund will exit at a particular future time is also of interest. This time is 

the first future time when an existing fund’s inferred ability deteriorates to the exit value 𝑚. We show 

the probability of a fund’s exit at any future time in the next proposition. 

Proposition FE2. Funds’ Exit Probability at a Future Time. At time 𝑡, for 𝑚௧ > 𝑚 and any time 𝑢, 𝑢 > 𝑡, the probability of a fund’s exit at time 𝑢 + 𝑑𝑢, assuming current coefficient values prevail, 

is 𝑃௠೟ᇲି௠ᇲି௔భ(௧,క೟) ఙ೘(ఊ೟)⁄ (𝑢 − 𝑡)𝑑𝑢, where the density 

 𝑃௠೟ᇲି௠ᇲି௔భ(௧,క೟) ఙ೘(ఊ೟)⁄ (𝑢 − 𝑡) = 𝑒ି௔భ(௧,క೟)ଶఙ೘(ఊ೟)൬௠ᇲమି௠೟ᇲమି(௨ି௧)൰𝑃௠బᇲି௠ᇲ଴ (𝑢 − 𝑡) 

                      × E௧௠೟ᇲି௠ᇲ ቎expቌ−𝑎ଵଶ(𝑡, 𝜉௧)2𝜎௠ଶ (𝛾௧)න൫𝑟௟ + 𝑚ᇱ൯ଶ𝑑𝑙௨
௧ ቍ቏ (32) 

with 

 𝑚௧ᇱ = 1𝜎௠(𝛾௧)ቆ𝑚௧ + 𝑎଴(𝑡, 𝜉௧)𝑎ଵ(𝑡, 𝜉௧)ቇ     and    𝑚ᇱ = 1𝜎௠(𝛾௧)ቆ𝑚 + 𝑎଴(𝑡, 𝜉௧)𝑎ଵ(𝑡, 𝜉௧)ቇ, (33) 

and 𝑟௟ is a 3-dimensional Bessel bridge, over the interval [𝑡,𝑢], between 0 and 𝑚଴ᇱ − 𝑚ᇱ, with 𝑟௧ =
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𝑚௧ᇱ  and 

 𝑑𝑟௟ = ቆ𝑚ᇱ − 𝑟௟𝑢 − 𝑙 + 1𝑟௟ቇ 𝑑𝑙 + 𝑑𝑊ഥ௟ , (34) 

under the density 

 𝑃௠బᇲି௠ᇲ଴ (𝑢 − 𝑡) = ห𝑚௧ᇱ − 𝑚ᇱหඥ2𝜋(𝑢 − 𝑡)ଷ exp൭− ൫𝑚௧ᇱ − 𝑚ᇱ൯ଶ2(𝑢 − 𝑡) ൱, (35) 

and E௧௠బᇲି௠ᇲ(∙)  is the expectation operator with this density. The density 𝑃௠బᇲି௠ᇲ଴ (𝑢 − 𝑡)  is the 

probability density of a fund’s exit at 𝑢 + 𝑑𝑢 if 𝑎଴(𝑡, 𝜉௧) = 𝑎ଵ(𝑡, 𝜉௧) = 0. 

Proof. We adapted Alili, Patie, and Pedersen (2005) (APP) Theorem 5.1, to our process coefficients 𝑎଴(𝑡, 𝜉௧), 𝑎ଵ(𝑡, 𝜉௧), 𝜎௠(𝛾௧), the initial condition 𝑚௧, and the exit barrier 𝑚. □ 

Although Propositions FE1 and FE2 involve considerable mathematical notations, their 

implications are straightforward. First, if a manager’s inferred ability 𝑚௧  is farther away from the 

survival ability level 𝑚, then it is more unlikely for the fund to exit the market. As a fund’s equilibrium 

size is determined by 𝑚௧, the above results also imply that if a fund is larger, then the probability for it 

to exit the market is lower. Second, sensitivity of expected manager ability to innovation shocks in fund 

gross alpha, 𝜎௠(𝛾௧), also affects the fund’s probability to exit the market. This is because a higher 𝜎௠(𝛾௧) implies that the same innovation shock in fund performance induces a larger change in 𝑚௧, 
consequently affecting 𝑚௧’s relative size to 𝑚. Third, coefficients, such as 𝑎଴(𝑡, 𝜉௧) and 𝑎ଵ(𝑡, 𝜉௧), 

change over time, inducing more complex time patterns of the probability of exit. 

We next write a fund’s exit probability under a special case of survival ability levels. While 

economically, survival ability levels are a matter of scaling, mathematically, the solutions for this special 

case happen to fit existing functional forms and become substantially simpler and in full closed form. 

Corollary FE2. Fund Exit Probability at a Future Time Under Zero Survival Level. Under 

the conditions of Proposition FE2, for the survival level, 𝑚ᇱ = 0, we have 

𝑃௠೟ᇲି଴ି௔భ(௧,క೟) ఙ೘(ఊ೟)⁄ (𝑢 − 𝑡) = |𝑚௧ᇱ |√2𝜋 ⎣⎢⎢
⎢⎡ −𝑎ଵ(𝑡, 𝜉௧)𝜎௠(𝛾௧)sinhቆ−𝑎ଵ(𝑡, 𝜉௧)𝜎௠(𝛾௧) (𝑢 − 𝑡)ቇ⎦⎥⎥

⎥⎤ଷ ଶൗ
 (36) 
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× exp⎝⎜⎜
⎛𝑎ଵ(𝑡, 𝜉௧)𝑚௧ᇱଶ2𝜎௠(𝛾௧) × 𝑒௔భ(௧,క೟)ఙ೘(ఊ೟) (௨ି௧)

sinhቆ−𝑎ଵ(𝑡, 𝜉௧)𝜎௠(𝛾௧) (𝑢 − 𝑡)ቇ − 𝑎ଵ(𝑡, 𝜉௧)2𝜎௠(𝛾௧) (𝑢 − 𝑡)⎠⎟⎟
⎞. 

Proof. As in the proof of Proposition FE2, we have now adapted APP Equation 2.8. □ 

Based on the results of Propositions FE1 and FE2, we have some immediate results of the 

probability of exit for old funds, i.e., 𝑡 → ∞, as shown in the next corollary. 

Corollary FEOF. Old Funds’ Exit Probability. As a fund gets very old, i.e., 𝑡 → ∞ , for 𝑚௧ > 𝑚 and 𝑢 > 𝑡, we have the following results. 

• Under a nonlinear dynamic ability framework, both Prob ቀ𝑑𝑚௧ < 𝑚 −𝑚௧ቚℱ௧కቁ  and 𝑃௠೟ᇲି௠ᇲି௔భ(௧,క೟) ఙ೘(ఊ೟)⁄ (𝑢 − 𝑡) still change with time and fund size. 

• Under a linear dynamic ability framework, both Prob ቀ𝑑𝑚௧ < 𝑚 −𝑚௧ቚℱ௧కቁ  and 𝑃௠೟ᇲି௠ᇲି௔భ ఙ೘(ఊ೟)⁄ (𝑢 − 𝑡) change only with fund size. 

• Under a linear constant ability framework, both Prob ቀ𝑑𝑚௧ < 𝑚 −𝑚௧ቚℱ௧కቁ  and 𝑃௠೟ᇲି௠ᇲି௔భ ఙ೘(ఊ೟)⁄ (𝑢 − 𝑡) are zero. 

The intuitions of the above results are as follows. Under a linear constant ability framework, as 

a fund gets old and investors have observed sufficiently many return realizations, the manager’s 

constant ability is perfectly estimated, making the inferred ability stay unchanged and, consequently, a 

constant equilibrium fund size. Given that this old fund survives in the market (with inferred ability 

higher than the survival level), its inferred ability will be higher than the survival level for sure, so it 

will not exit the market. Under a linear dynamic ability framework, after the fund gets very old, the 

estimation precision achieves its steady state and will not change anymore. However, the manager’s 

inferred ability, implied by fund size, will still change over time. Consequently, the probability of exit 

for this old fund depends on how far its inferred ability is from the survival level, making this probability 

a function of the manager’s inferred ability level and, consequently, a function of fund size. As old funds 

tend to have a large size, a linear dynamic ability framework would predict a very low exit probability 

for old funds. Under a nonlinear dynamic ability framework, the coefficients can be driven by dynamic 

economic factors, so they change over time. Consequently, when a fund gets very old, the probability 
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of its manager’s inferred ability to be below the survival level not only changes with its current inferred 

ability level (implied by size), but also changes with time. 

Current mutual fund data shows that the probability for old funds to exit the market is 

nonnegligible and changes with time (we also show these results in our empirical study). While the 

linear frameworks, such as those used by BG, Dangl, Wu, and Zechner (2008), and Brown and Wu 

(2013, 2016), cannot explain these phenomena, our nonlinear dynamic ability framework explains these 

phenomena in a systematic way. For illustration, we offer simulation results of probabilities of fund exit 

under different frameworks in the Internet Appendix. 

4 Implementations of Nonlinear Dynamic Ability Frameworks 

This section provides implementations of nonlinear dynamic ability frameworks that 

incorporate effects of different economic factors into evolutions of manager abilities and gross alphas. 

Consequently, we show how these factors affect equilibrium investment decisions, fund flow-

performance relationship, and old funds’ exit probability. To simplify our discussions, we focus on risk-

neutral investors and set some coefficients constant or zero. We directly apply the corresponding results 

shown in Propositions RN, FE1, and FE2. 

4.1 Endogenous Matching in Venture Capital Firms, Private Equity Firms, and Funds of 
Funds 

A fund of funds (FoF) faces an endogenous matching problem, that is, a capital allocation 

problem across affiliated funds. Assume there is a representative FoF manager allocating his/her 

portfolio to 𝑛 affiliated funds, and let 𝐦𝐭, an 𝑛 × 1 vector, be the inferred abilities of the managers 

of these affiliated funds. If the FoF manager wishes to build portfolios with higher growth rates and 

lower volatility based on inferred abilities, 𝐦𝐭, then his/her optimal allocation problem becomes the 

growth-optimal one of Bernoulli (1738, 1954) and Kelly (1956). To simplify our discussion, we assume 

that an affiliated fund’s ability and gross alpha are independent of those of other affiliated funds. Then, 

the optimal portfolio weights to 𝑛 affiliated funds, 𝐮, an 𝑛 × 1 vector, is 

 𝐮 = ൫𝐁𝐓𝐁൯ି𝟏𝐀𝐦𝐭, (37) 

where 𝐀  and 𝐁𝐓𝐁 , are diagonal matrices with 𝐴௜൫𝑡, 𝜉௜,௧൯  and 𝐵௜ଶ൫𝑡, 𝜉௜,௧൯  as the 𝑖 th diagonal 
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element, respectively.40,41 

The optimal allocations, 𝐮, are proportional to ratios of inferred instantaneous (dynamic) mean 

returns, 𝐀𝐦𝐭 , which in turn are proportional to inferred abilities over their instantaneous variance, 𝐁𝐓𝐁. As we can model the effects of economic factors on the values of the elements of 𝐀 and 𝐁 over 

time in our nonlinear framework, we can show how these factors affect 𝐮 and consequently the FoF 

manager’s portfolio value. 

Similarly, venture capital funds (VC) and private equity funds (PE) allocate their portfolios 

across ventures and private equity firms, respectively. If we model the unobservable abilities of ventures’ 

(private equity firms’) managers to generate observable profits in a way similar to the one when we 

model FoF-affiliated fund managers’ unobservable abilities and observable gross alphas, then VC’s 

(PE’s) optimal endogenous portfolios of ventures (private equity firms) is 𝐮 shown above. Then, we 

can show how different economic factors affect VC and PE holdings and portfolio values over time 

through the coefficient values of 𝐀 and 𝐁. 

4.2 Fund Family Activity 

Current literature demonstrates that fund families optimize family values by cross-fund 

subsidization (i.e., performance transfer among affiliated funds).42 Consequently, given the same level 

of manager ability, the subsidization receiver’s (provider’s) fund gross alpha increases (decreases) with 

the intensity of this subsidization. To model this effect in a simplified way, we specialize Equations (1) 

and (2) as follows: 

 𝑑𝜃௧ = 𝑏ଵ𝑑𝑊ଵ,௧ , (38) 

 𝑑𝜉௧𝜉௧ = 𝐴(𝑡)𝜃௧𝑑𝑡 + 𝐵𝑑𝑊ଶ,௧ . (39) 

Consider a simple case where cross-fund subsidization is from old, affiliated funds to young ones, as 

suggested by Gaspar, Massa, and Matos (2006) and Eisele, Nefedova, Parise, and Peijnenburg (2020). 

 
40 The 𝐴௜൫𝑡, 𝜉௜,௧൯, 𝐵௜൫𝑡, 𝜉௜,௧൯, and 𝜉௜,௧ for affiliated fund 𝑖 correspond to 𝐴, 𝐵, and 𝜉௧ in our Equation (2). To 
simplify our discussions, we assume that these 𝑛  affiliated funds’ unobservable abilities associate with 
observable gross alphas in a way similar to the one shown in Equations (1) and (2) of Feldman and Xu (2022), 
but in our model, we allow the coefficients to be functions of 𝜉௜,௧ and 𝑡. See the vector version in Feldman and 
Xu (2022). 
41  Equation (37) is a vector version of a special case of Feldman (1989, p. 795), where 𝐴଴ = 𝑟 = 𝐽௪௠ = 0 , ି௃௪ೢ 𝐽௪௪ = 1. 𝐴ଵ (𝐵, 𝑚௧) there becomes the diagonal matrix 𝐀, (the diagonal matrix 𝐁𝐓𝐁, the vector of abilities 𝐦𝐭) here. 
42 See, for example, Gaspar, Massa, and Matos (2006), Evans (2010), Eisele, Nefedova, Parise, and Peijnenburg 
(2020), and Xu (2022). 
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Then, a fund would receive return transfer when it is young and provide such transfer when it gets older. 

With the same level of manager ability, a fund’s gross alpha is higher when it is young, on average. 

Thus, we set 𝐴′(𝑡) < 0. By the earlier results, we have 𝜎௠(𝛾௧) ≜ 𝐴(𝑡)𝛾௧/𝐵. That is, the decrease in 𝐴(𝑡)  exerts negative impact on 𝜎௠(𝛾௧)  because gross alpha is less sensitive to manager ability, 

making inferred ability less sensitive to innovation shocks. However, depending on parameter values, 

the decrease in 𝐴(𝑡)  also increases or decreases estimation error of manager ability, 𝛾௧ , which 

consequently exerts positive or negative impact on 𝜎௠(𝛾௧). 

If the subsidization effect on 𝐴(𝑡) is so strong that 𝐴(𝑡) drives 𝜎௠(𝛾௧), then 𝜎௠(𝛾௧) also 

decreases over time. Consequently, in equilibrium, flow-performance sensitivity and convexity 

decrease with fund age because both 𝐴(𝑡) and 𝜎௠(𝛾௧) decrease over time. If 𝛾௧ is increasing over 

time and its effect is stronger than 𝐴(𝑡) in some periods and weaker in others, then 𝜎௠(𝛾௧) changes 

with time nonmonotonically. Consequently, equilibrium flow-performance sensitivity and convexity 

can change with fund age nonmonotonically. In these two cases, an old fund’s exit probability still 

changes with time as 𝜎௠(𝛾௧) has no steady state. 

4.3 Manager Replacement 

Dangl, Wu, and Zechner (2008) show that a fund’s portfolio risk increases before a manager 

replacement and decreases after this replacement. The changes in portfolio risk would induce changes 

in the volatility of fund gross alpha. To model this effect, we simply specialize Equations (1) and (2) as 

follows: 

 𝑑𝜃௧ = 𝑏ଵ𝑑𝑊ଵ,௧ , (40) 

 𝑑𝜉௧𝜉௧ = 𝐴𝜃௧𝑑𝑡 + 𝐵(𝑡)𝑑𝑊ଶ,௧ . (41) 

Assume that the time of a manager replacement is 𝑡̅ , and 𝐵′(𝑡) > 0  when 𝑡 < 𝑡̅  and 𝐵′(𝑡) < 0 

when 𝑡 > 𝑡̅ .43  The above framework also implies that the change in manager ability induced by 

manager replacement is captured by the shock 𝑑𝑊ଵ,௧̅ . By the earlier results, we have 𝜎௠(𝛾௧) ≜𝐴𝛾௧/𝐵(𝑡) . That is, the increase (decrease) in 𝐵(𝑡)  over time exerts negative (positive) impact on 𝜎௠(𝛾௧) because the higher (lower) gross alpha volatility induced by the future (previous) manager 

 
43 Here we assume that the time of manager replacement, 𝑡̅, is known and fixed. If 𝑡̅ is random, it introduces 
complexity in the learning processes; but the equilibrium flow-performance sensitivity and convexity are still 
nonmonotonic over time, and an old fund’s exit probability still changes with time. Also, multiple replacements 
would enhance these insights. 
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replacement makes return shocks less (more) informative, so the inferred ability is less (more) sensitive 

to these shocks. However, depending on parameter values, the change in 𝐵(𝑡) over time also increases 

or decreases 𝛾௧  over time. Therefore, putting all these effects together, it is plausible that 𝜎௠(𝛾௧) 

changes over time nonmonotonically. 

If the effect of manager replacement on 𝐵(𝑡) is sufficiently strong that 𝐵(𝑡) drives 𝜎௠(𝛾௧), 

then 𝜎௠(𝛾௧) would decrease (increase) with time before (after) 𝑡̅. Consequently, in equilibrium, flow-

performance sensitivity and convexity decrease (increase) with fund age before (after) 𝑡̅. Otherwise, 

the evolution of 𝐵(𝑡) due to manager replacement induces more complex time patterns of equilibrium 

flow-performance sensitivity and convexity. In all these cases, an old fund’s exit probability changes 

with time because 𝜎௠(𝛾௧) has no steady state. 

4.4 Competition by New Entrants 

Competition induced by new funds affects the performance of incumbent funds. For example, 

Wahal and Wand (2011) show that if new funds have portfolios similar to those of incumbents, then 

incumbents’ performances, fund fees, and investment flows are negatively affected. To model this effect, 

we specialize Equations (1) and (2) as follows. 

 𝑑𝜃௧ = [𝑎଴(𝑡) + 𝑎ଵ(𝑡)𝜃௧]𝑑𝑡 + 𝑏ଵ𝑑𝑊ଵ,௧ , (42) 

 𝑑𝜉௧𝜉௧ = 𝐴𝜃௧𝑑𝑡 + 𝐵𝑑𝑊ଶ,௧ , (43) 

where the ability tendency coefficients, 𝑎଴(𝑡) and 𝑎ଵ(𝑡), decrease if there are a larger number of new 

funds with similar portfolios enter the market. As the number of these new entrants varies over time, 𝑎଴(𝑡) and 𝑎ଵ(𝑡) change over time nonmonotonically. By our earlier results, the changes in 𝑎଴(𝑡) and 𝑎ଵ(𝑡) affect the level of the fund flow directly, as ability tendency determines the expected return and, 

consequently, influences investment flows. Also, a higher 𝑎ଵ(𝑡)  induces a larger 𝛾௧  because the 

inferred ability is less precise if changes in true unobservable ability are more corelated with previous 

unobservable true ability levels. Consequently, 𝜎௠(𝛾௧) is larger. Therefore, the nonmonotonicity of 𝑎ଵ(𝑡)  induces nonmonotonicity in 𝜎௠(𝛾௧) , making equilibrium flow-performance sensitivity and 

convexity change over time nonmonotonically. Moreover, old funds’ exit probability changes over time 

nonmonotonically as 𝑎଴(𝑡), 𝑎ଵ(𝑡), and 𝜎௠(𝛾௧) change over time nonmonotonically. 

The real-life situation can be more complex than those in the above implementations. For 

instance, fund families can also direct cross-fund subsidization from low-value funds to high-value 
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funds, the effect of manager replacement on fund portfolio risk can vary across fund value, and 

competition induced by new entrants might have different impact on funds of different values. 

Consequently, the coefficients shown in Sections 4.1, 4.2, 4.3, and 4.4 also change with fund share 

value, i.e., 𝐴(𝑡, 𝜉௧), 𝐵(𝑡, 𝜉௧), 𝑎଴(𝑡, 𝜉௧) and 𝑎ଵ(𝑡, 𝜉௧), and other coefficients can also be functions of 𝑡 and 𝜉௧ due to the effects of these factors. Further, besides the factors discussed above, there can be 

many other economic factors affecting these coefficients. More importantly, different economic factors 

can simultaneously affect the evolutions of gross alpha and manager ability and, thus, simultaneously 

exert impacts on the market equilibrium. As some economic factors (or forces) are unobservable in 

reality, even though we control for all observable variables, empirically we still expect to observe 

nonmonotonic flow-performance sensitivity and convexity, and old funds’ dynamic exit probability 

over time. 

5 Empirical Study 

Based on our theoretical findings shown in the propositions and corollaries, we have the 

following empirical predictions. 

• Under a nonlinear dynamic ability framework, the flow-performance sensitivities and 

convexities change with time nonmonotonically and the probability of exit for old funds 

changes with both time and fund size. 

• Under a linear dynamic ability framework, the flow-performance sensitivities and convexities 

change with time monotonically and the probability of exit for old funds changes with fund size 

only. 

• Under a linear constant ability framework, the flow-performance sensitivities and convexities 

decrease with time monotonically and the probability of exit for old funds is zero. 

The goal of our empirical study is to show which framework is supported by empirical evidence. 

5.1 Methodology 

We first analyze the flow-performance relationship using methods common in the literature. 

The (percentage) fund flow, 𝐹𝑙𝑜𝑤௜,௧, is calculated as 

 𝐹𝑙𝑜𝑤௜,௧ = 𝑇𝑁𝐴௜,௧ − 𝑇𝑁𝐴௜,௧ିଵ൫1 + 𝑅𝑒𝑡௜,௧൯𝑇𝑁𝐴௜,௧ିଵ , (44) 

where, 𝑖 is the fund index, 𝑡 is the time (month) index, 𝑇𝑁𝐴௜,௧ is the fund’s total net assets under 

management, and 𝑅𝑒𝑡௜,௧  is the fund net return. We use the fund net alpha, 𝛼௜,௧ , to measure fund 
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performance. Following Feldman, Saxena, and Xu (2020), and Feldman and Xu (2023a), we estimate 

the following style-matching model: 

 𝑅𝑒𝑡௜,௧ = 𝛼௜,௧ + 𝑏௜,௧ଵ 𝐹௧ଵ + 𝑏௜,௧ଶ 𝐹௧ଶ + ⋯+ 𝑏௜,௧௡ 𝐹௧௡, (45) 

where 𝐹௧ଵ through 𝐹௧௡ are the net returns of tradable index funds of different asset classes. Following 

Berk and van Binsbergen (2015), we use tradable index funds as factors in this model because they 

represent the next-best investment opportunity available to investors as tradable assets. Among 𝐹௧ଵ 

through 𝐹௧௡, we also allow for a “risk-free fund” by including the CRSP Fama-French risk-free rate as 

a potential benchmark. We perform this analysis on a rolling basis using returns from months (𝑡 − 60) 

to (𝑡 − 1) to avoid look-ahead bias. In particular, we estimate coefficients 𝑏௜,௧ଵ  to 𝑏௜,௧௡  to minimize 

the variance of the residual using observations in the previous 60 months and then subtract 𝑅𝑒𝑡௧ by 𝑏௜,௧ଵ 𝐹௧ଵ + 𝑏௜,௧ଶ 𝐹௧ଶ + ⋯+ 𝑏௜,௧௡ 𝐹௧௡ to calculate 𝛼௜,௧. Coefficients 𝑏௜,௧ଵ  to 𝑏௜,௧௡  are constrained to be between 

zero and one and to be summed up to one, as investors cannot short sell assets. 

Our main purpose is to show how the flow–net alpha relationship change over time. We use a 

fund’s age to represent its “time,” and analyze how the flow–net alpha sensitivity and convexity change 

with fund age. We use the model 

 𝐹𝑙𝑜𝑤௜,௧ = 𝛿଴ + 𝛿ଵ𝛼௜,௧ିଵ + ෍𝛽௝𝛼௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝ + ෍𝑑௝൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝ + 𝛿
∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ିଵ + 𝜙௧ + 𝜐௜ + 𝜀௜,௧ , (46) 

where 𝐴𝑔𝑒௜,௧ିଵ is the lagged values of fund age. The coefficients 𝛽௝’s show how the flow–net alpha 

sensitivity changes over fund age. The coefficients of the control variables are represented by the vector 𝛿. We follow the literature44 to choose control variables in the vector 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ିଵ, which include the 

lagged values of the natural logarithm of the fund’s total net assets under management (ln𝑇𝑁𝐴௜,௧ିଵ); 

fund volatility ( 𝑉𝑜𝑙௜,௧ିଵ ); cross-sectional net alpha dispersion (𝐷𝑖𝑠𝑝௜,௧ିଵ ); fund expense ratio 

(𝐸𝑥𝑝𝑒𝑛𝑠𝑒௜,௧ିଵ); fund turnover ratio (𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟௜,௧ିଵ); the weighted average flow of the fund class based 

on the Lipper fund classification, i.e., the style flow, (𝑆𝑡𝑦𝑙𝑒𝐹𝑙𝑜𝑤௜,௧ିଵ); fund flow (𝐹𝑙𝑜𝑤௜,௧ିଵ); fund 

family net alpha (𝐹𝑎𝑚𝐴𝑙𝑝ℎ𝑎௜,௧ିଵ ); the natural logarithm of fund family size (ln𝐹𝑎𝑚𝑆𝑖𝑧𝑒௜,௧ିଵ ); a 

dummy variable to indicate months with market risk premium between −5%  and 5% , i.e., the 

moderate months, (𝑀𝑜𝑑௜,௧ିଵ); and the U.S. economic policy uncertainty index (𝐸𝑃𝑈௜,௧ିଵ). Variables 

 
44 See, for example, Lynch and Musto (2003), Bollen (2007), Huang, Wei, and Yan (2007, 2021), Chen, Goldstein, 
and Jiang (2010), Spiegel and Zhang (2013), Brown and Wu (2016), Franzoni and Schmalz (2017), Harvey and 
Liu (2019), and Jiang, Starks, and Sun (2021). 
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𝜙௧ and 𝜐௜ represent year effects and fund effects, respectively. Detailed definitions and constructions 

of these variables are shown in the Data Appendix. When analyzing the flow–net alpha relationship, we 

also include the interaction terms of 𝑉𝑜𝑙௜,௧ିଵ, ln𝑇𝑁𝐴௜,௧ିଵ 𝑀𝑜𝑑௜,௧ିଵ, 𝐷𝑖𝑠𝑝௜,௧ିଵ, and 𝐸𝑃𝑈௜,௧ିଵ with 𝛼௜,௧ିଵ  because the current literature shows that the flow–net alpha sensitivity is affected by fund 

volatility [Huang, Wei, and Yan (2021)], fund size [Brown and Wu (2016)], market states [Franzoni and 

Schmalz (2017)], cross-sectional net alpha dispersion [Harvey and Liu (2019)], and economic policy 

uncertainty [Jiang, Starks, and Sun (2021)]. 

To analyze how the flow–net alpha convexity changes with fund age, we define a dummy 

variable 𝑃𝑜𝑠௜,௧ , where 𝑃𝑜𝑠௜,௧ = 1  if 𝛼௜,௧ ≥ 0 , and 𝑃𝑜𝑠௜,௧ = 0  otherwise. We use the following 

model for our analysis: 

 𝐹𝑙𝑜𝑤௜,௧ = 𝛿଴ + 𝛿ଵ𝛼௜,௧ିଵ + ෍𝛽௝𝛼௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝ + ෍𝑑௝൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝+ ෍𝜆௝𝛼௜,௧ିଵ𝑃𝑜𝑠௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝ + 𝛿ଶ𝛼௜,௧ିଵ𝑃𝑜𝑠௜,௧ିଵ+ 𝛿ଷ𝑃𝑜𝑠௜,௧ିଵ + 𝛿 ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ିଵ + 𝜙௧ + 𝜐௜ + 𝜀௜,௧ . 
(47) 

The coefficients 𝜆௝’s show how the flow–net alpha convexity changes over fund age. 

We also study how the probability of fund exit changes over fund age, especially for the old 

funds. We use the following model: 

 Prob൫𝐸𝑥𝑖𝑡௜,௧ = 1|𝐗𝒊,𝒕ି𝟏 = 𝐱𝒊,𝒕ି𝟏൯ = 𝐹൫𝛿଴ + 𝛿ଵ𝐴𝑔𝑒௜,௧ିଵ + 𝛿 ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ିଵ + 𝜙௧ + 𝜐௜ + 𝜀௜,௧൯, (48) 

where 𝐸𝑥𝑖𝑡௜,௧ is a dummy variable equal to one if the fund exits the market and zero otherwise. A fund 

is defined as exited market if its last share class is delisted through liquidation or merge.45 A fund can 

be delisted for other reasons. For example, it is changed to a closed-end fund, it closes to new investment 

and does not report fund information, or it is removed from the database with no reason reported. As 

these types of delisting might not indicate fund exits, we do not regard them as fund exits. The set of 

explanatory variables is represented by 𝐗𝒊,𝒕ି𝟏 and their realizations are represented by 𝐱𝒊,𝒕ି𝟏. We use 

the logistic cumulative distribution function for 𝐹 to run a panel logit model, and for robustness check, 

we use the standard normal distribution function for 𝐹 to run a panel probit model. Then, as we use 

monthly data, Prob൫𝐸𝑥𝑖𝑡௜,௧ = 1|𝐗𝒊,𝒕ି𝟏 = 𝐱𝒊,𝒕ି𝟏൯  represents funds’ probability of exit in the next 

 
45 In the CRSP database, in most of the cases in which a fund’s share class is merged, the acquirer’s share class 
code is provided, showing that most of the “merges” in the database are actually acquisitions by other funds. 
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month, given the information in the current month. 

5.2 Data 

We collect our active fund data from the survivor-bias-free mutual fund database of the Center 

for Research in Security Prices (CRSP). Our sample period is from January 1990 to December 2020, 

and monthly data is used.46 We first exclude index funds, variable annuity funds, and exchange-traded 

funds (ETFs). Then, we choose U.S. domestic equity mutual funds by using the Lipper fund 

classification.47 This equity fund filter is similar to the one in Brown and Wu (2016), and the one in 

Feldman, Saxena, and Xu (2020), which is also close to the one in Pastor, Stambaugh, and Taylor 

(2015).48 Because we use a 5-year rolling window to estimate fund net alphas and because we require 

funds to have a long time-series of observations of all variables, i.e., at least 15 years, so that the 

variations of funds’ ages are sufficiently large for analyzing how the flow–net alpha relationship 

changes over fund age, we include funds that have at least 20 years of observations. We also require 

each of our equity funds to have fewer than 5 years of missing observations between the first observation 

and the last one, so that the style-matching model can perform well. 

All fund returns are net of management expenses, 12b-fees, and front- and rear-load fees. We 

also obtain funds’ net assets under management, the expense ratios, and turnover ratios from CRSP. 

While we analyze fund-level data, the CRSP data is offered at the fund share class level. We use the 

MFLINKS database to aggregate fund share class-level information to fund-level information. In 

particular, we calculate funds’ total net assets under management by summing up its share classes’ net 

assets under management, and calculate fund net returns, fund expense ratios, and fund turnover ratios 

as weighted averages of its share classes’ net returns, fund expense ratios, and fund turnover ratios, 

respectively, using the lagged share class net assets under management as weights. Fund volatility is 

calculated as the standard deviation of the fund’s net returns in the prior 12 months, and cross-sectional 

net alpha dispersion is calculated as the cross-sectional interquartile range of fund net alphas. Fund age 

 
46 Information on the Lipper fund classification and most of the information on the management company code 
to identify fund families begins in December of 1999. As we use a five-year rolling window to estimate fund net 
alpha, we start our sample from January 1990 so that our tests can include fund data starting from January 1995. 
47 We use funds in the following Lipper classes: Large-Cap Core, Large-Cap Growth, Large-Cap Value, Mid-Cap 
Core, Mid-Cap Growth, Mid-Cap Value, Small-Cap Core, Small-Cap Growth, Small-Cap Value, Multi-Cap Core, 
Multi-Cap Growth, and Multi-Cap Value. If a fund has a missing Lipper class in some months, we use its Lipper 
class in the previous months; if there is no information on a Lipper class in the previous months, we use its Lipper 
class in the later months. 
48 See the discussion regarding the equity fund filter in Feldman, Saxena, and Xu (2020, Appendix). 
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is the time (in ten years) since the inception of the oldest share class. A fund’s delisted time is the month 

after the last return observation of its last share class, and a fund is defined as exited market if its last 

share class is delisted due to liquidation, merge, or probably due to these, as indicated by CRSP. Fund 

family is identified by the management company code.49 The fund family net alpha is calculated as the 

weighted average of the family members’ net alphas, excluding the net alphas of the fund under 

consideration, where the lagged net asset under management is the weight.50  Fund family size is 

calculated as the number of active equity funds in the family. 

We also obtain data on index funds from Morningstar Direct and use the fund ID in the database 

to aggregate fund share class-level information to fund-level information for the index funds. These 

index funds, which we use as benchmark factors to estimate fund net alphas in the style-matching model 

in Equation (45), include a Large-Cap blend fund (Vanguard 500 Index), a Large-Cap equally-weighted 

fund (Invesco Equally-Weighted S&P 500), a Mid-Cap blend fund (Vanguard Extended Market Index), 

a Small-Cap blend fund (Vanguard Small-Cap Index Fund). We require index funds to have no missing 

observations in our sample period. We collect the risk-free rate and excess return on the market (market 

risk premium) from the Fama-French database in Wharton Research Data Services (WRDS) and collect 

the economic policy uncertainty index from the website Economic Policy Uncertainty51. 

Our main sample to analyze the flow–net alpha relationship contains 769 funds, which are long-

living active equity funds. To analyze the probability of fund exits, we extend our sample by including 

active equity funds with observations fewer than 15 years. This extended sample contains 3,030 funds. 

5.3 Empirical Results 

Table 1 reports the summary statistics. In our main sample, the fund net alpha, on average, is 

close to zero and its distribution tends to be symmetric. The fund flow is skewed to the right, as its mean 

is larger than its median. Also, the fund flow is large at the extremes. It is equal to 14% at the 99th 

percentile and −11% at the 1st percentile. Similar to Brown and Wu (2016), when analyzing the flow–

net alpha relationship, we winsorize the fund flow variable at the 1st and the 99th percentiles for each 

fund to mitigate the effects of extreme observations that are potentially due to fund mergers or data 

 
49 If a fund has a missing management company code in some months, we use the fund’s management company 
code in the previous months. If there is no information on the management company code in the previous months, 
we use the fund’s management company code in the later months. 
50 In our sample, to be included in a family, a fund should be an active equity fund as defined above. 
51 The website address is http://www.policyuncertainty.com (accessed on April 1, 2021). Baker, Bloom, and Davis 
(2016) provide details on the construction of this index. 
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error.52 Moreover, the R-squared of the style-matching model is very high, with an average of around 90%, showing that the model fits well and it is unlikely that we have omitted relevant benchmark factors 

in estimating the fund net alphas. Furthermore, the average fund age in our sample is around twenty 

years, showing that they are long-living funds. In addition, a quarter of our funds belong to a small 

family with four or fewer member funds; there are also a few very big fund families in our main sample. 

Flow–Net Alpha Relationship and Fund Age 

Table 2 illustrates the results of the model in Equation (46), which analyzes the flow–net alpha 

sensitivity. We find that, on average, the flow–net alpha sensitivity is positive, as shown in model 

specification (1). Then, we include the terms 𝛼௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯௝ and ൫𝐴𝑔𝑒௜,௧ିଵ൯௝ up to 𝑗 = 4 in the 

following model specifications. 53  We find that the interaction terms from 𝛼௜,௧ିଵ𝐴𝑔𝑒௜,௧ିଵ  to 𝛼௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯ସ are all significant with negative, positive, negative, and positive signs, respectively; 

so, on average, the flow–net alpha sensitivity changes with fund age nonmonotonically. In the Internet 

Appendix, we also show that multicollinearity is not a concern in our empirical results. 

Table 3 illustrates the results of the model in Equation (47), which analyzes the flow–net alpha 

convexity. We find that, on average, the flow–net alpha relationship is convex, as shown in model 

specification (1), because fund flow is more sensitive to net alpha when the net alpha is positive than 

when it is negative. In particular, when the fund net alpha is positive (negative), a one percentage point 

higher in fund net alpha induces an increase in the fund flow by around 0.21%  ( 0.11% ). 

Corresponding to the results in Table 2, we include the interaction terms 𝛼௜,௧ିଵ𝑃𝑜𝑠௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯௝ up 

to 𝑗 = 4  in the following model specifications. We find that the interaction terms from 𝛼௜,௧ିଵ𝑃𝑜𝑠௜,௧ିଵ𝐴𝑔𝑒௜,௧ିଵ  to 𝛼௜,௧ିଵ𝑃𝑜𝑠௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯ସ  are all significant with negative, positive, 

negative, and positive signs, respectively; so, on average, the flow–net alpha convexity changes with 

fund age nonmonotonically. 

We draw the flow–net alpha sensitivity and convexity over fund age, using the coefficient 

values of the model specification (5) in Table 2 and Table 3, respectively, and show the graphs in Figure 

 
52 In unreported robustness tests, instead of winsorizing the flow observations, for each fund, we exclude the flow 
observations below the 1st or above the 99th percentile, and redo the tests of models in Equations (46) and (47). 
We find highly consistent results in these robustness tests. 
53 The coefficients of these terms with 𝑗 = 5 are insignificant. 
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1. We plot the results for the average fund of ages of 10 to 80 years because around 90%  of our 

observations correspond to a fund age within this range. When the average fund grows from 10 years 

old to 30 years old, the flow–net alpha sensitivity decreases continuously. When it is 30 years old, a one 

percentage point increase in net alpha induces an increase in fund flow by 0.1% lower than when it is 

10 years old. The flow–net alpha sensitivity starts to increase after the fund age is more than 30 years 

and then decreases again when fund age is around 45 years. After the average fund grows to around 65 

years, the flow–net alpha sensitivity increases again. The flow–net alpha convexity changes with fund 

age more volatilely. The convexity level decreases substantially when the average fund grows from 10 

years old to 20 years old. After that, it gradually increases and then decreases again when the fund grows 

to around 45 years old. Then, the convexity level decreases again and then increases again after the fund 

is 70 years old. 

The decrease in the flow–net alpha sensitivity and convexity with fund age in the earliest years 

arises because investors have more precise estimates of manager ability during these years as more fund 

performances are revealed. The fluctuations of flow–net alpha sensitivity and convexity in the later 

years might be induced by multiple economic forces. For instance, Gaspar, Massa, and Matos (2006) 

and Eisele, Nefedova, Parise, and Peijnenburg (2020) show that fund families transfer returns from old 

funds to young funds when optimizing family profit. As shown in Section 4.2, with this subsidization, 

for the same level of manager ability, the fund’s mean gross alpha is higher (lower) when it is young 

(old), i.e., 𝐴(𝑡, 𝜉௧) is large (small) when 𝑡 is small (large). Also, Dangl, Wu, and Zechner (2008) show 

that a manager replacement should be preceded by a portfolio risk increase and followed by a portfolio 

risk decrease, and these patterns are also affected by the length of the manager’s tenure. As discussed 

in Section 4.4, manager replacements would cause gross alpha volatility, 𝐵(𝑡, 𝜉௧), to fluctuate over 

time. These forces and other economic forces that create time-nonmonotonic gross alpha sensitivity to 

manager ability, fund return volatility, and sensitivity of inferred manager ability to fund performance 

all make the flow–net alpha sensitivities and convexities change nonmonotonically with fund age, 

resulting in the turning points in the graphs in the later years. 

In short, our results show that the flow–net alpha sensitivity and convexity change with fund 

age nonmonotonically, even after controlling the factors shown in the current literature, such as fund 

volatility, net alpha dispersion, market state, and economic policy uncertainty, that would affect the 

flow–net alpha relationship. These results support our nonlinear dynamic ability framework but are 
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inconsistent with linear dynamic or constant ability frameworks. Therefore, we show that, besides 

factors found in the current literature, the dynamics of manager abilities and the nonlinear association 

of manager abilities and gross alphas induced by unexplored factors and latent factors are relevant forces 

driving the flow-performance relationship. 

We note that different funds can have different initial conditions and stochastic realizations for 

manager abilities and performances, and due to the dynamic nature of our model, we expect that 

different funds exhibit different patterns of flow–net alpha sensitivity and convexity. To study the flow–

net alpha relationship of individual funds, we re-run the model specification (5) in Table 2 and Table 3 

for each fund without fund dummies and year dummies. We use the Newey-West estimator to estimate 

the standard errors, with the maximum lag of 12 to be considered in the autocorrelation structure of the 

regression error. In Table 5, we report the numbers of funds whose relevant coefficients are significant 

in Table 4. 

Panel A shows the results of the flow–net alpha sensitivity. We find that, regarding each of the 

interaction terms from 𝛼௜,௧ିଵ𝐴𝑔𝑒௜,௧ିଵ to 𝛼௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯ସ, around 20% of funds have significant 

coefficients. Many funds have significantly positive coefficients of some of these interaction terms and 

significantly negative coefficients of other interaction terms, showing nonmonotonic flow–net alpha 

sensitivities over fund age. Panel B shows the results of the flow–net alpha convexity. We find that, 

regarding each of the interaction terms from 𝛼௜,௧ିଵ𝑃𝑜𝑠௜,௧ିଵ𝐴𝑔𝑒௜,௧ିଵ  to 𝛼௜,௧ିଵ𝑃𝑜𝑠௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯ସ , 

around 22% of funds have significant coefficients. Many funds also exhibit nonmonotonic flow–net 

alpha convexities over fund age. Therefore, these results are also likely to support our nonlinear 

dynamic ability framework, and these dynamic processes vary across funds. 

Probability of Fund Exit and Fund Age 

To analyze how the probability of fund exit changes with fund age, we use the extended sample 

in which we do not require funds to have at least 15 years of observations. First, we illustrate funds’ 

survival rates at different age levels in Table 5. We can see that the survival rate does not monotonically 

increase with fund age but fluctuates with it. For example, the probability for a fund to survive in the 

next two years when it is 10 years old is 92.61%. This figure increases to 97.25% when it is 25 years 

old and decreases to 95.56%  when it is 40 years old. Also, when funds reach 40 years old, the 
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probability for them to exit the market at any time of the next five years is close to 9%, showing that 

old funds exit the market with a probability that is not so low. 

Table 6 reports the results of the logit model in Equation (48). We find that for the whole 

extended sample, holding other variables unchanged, a higher fund age significantly increases the 

probability of fund exit. This is also true in all the subsamples, in which we include observations such 

that the fund ages are above 10 years, above 15 years, above 20 years, and above 25 years, respectively. 

Also, the impact of fund age on the probability of fund exit is larger in the subsample containing funds 

older than 25 years than in other subsamples and in the whole extended sample. If we calculate the 

marginal effects, we find that at the average values of all the variables, a one-year increase in fund age 

induces a 0.0066%  increase in the probability of fund exit in the next month for the subsample 

containing funds older than 25 years, whereas this figure is only 0.0019% for the whole extended 

sample. Thus, older funds are more likely to exit the market. The reason might be that, over time, funds 

face more intensive competition from new entrants who use similar portfolio strategies [see, for 

example, Wahal and Wand (2011)], and this type of competition has negative impacts on the tendency 

of incumbents’ abilities, i.e., decreasing 𝑎଴(𝑡, 𝜉௧) and 𝑎ଵ(𝑡, 𝜉௧), as discussed in Section 4.44.4. 

These results are inconsistent with a linear dynamic ability framework or a linear constant 

ability framework. Under the former framework, old funds, such as those with ages larger than 25 years, 

should have zero probability of exit, whereas under the latter framework, old funds’ probability of exit 

should change with fund size but not with fund age. However, we do not find these results. Instead, we 

find that old funds experience a nontrivial probability of exit (shown in Table 5), and their probability 

of exit increases with fund age after controlling for fund size. Thus, these results are consistent with our 

nonlinear dynamic ability framework. 

6 Insights into the Findings in the Literature 

Current studies of the active fund management industry find other interesting phenomena, and 

our model provides insights into these findings. Our model can even offer better explanations and 

insights to some particular phenomena than some of the current models do. 

6.1 Insights on the Curvature of the Flow-Performance Relation 

Several views can be found in the current literature on the curvature of the flow-performance 

relationship, which has relevant implications for the fund industry. Some studies conclude that it is 
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convex [see, for example, Lynch and Musto (2003), BG, and Brown and Wu (2016)], whereas other 

studies suggest that the relationship is linear [see, for example, Spiegel and Zhang (2013)]. Our study 

complements this discussion by showing that the intercept, slope, and curvature of the function mapping 

flows to performance change over time nonmonotonically [see for example, Equations (17) and (29)], 

making empirical findings of these two types of curvature possible. 

For illustration, in Figure 2, we show two situations of observations of fund flows and fund net 

alphas of a particular fund. For each situation, we plot four increasing and convex functions (the blue 

dashed curves) with the independent variable as the fund net alpha and the dependent variable as the 

fund flow, and the corresponding realized observation points (the red circles). These four functions 

show the flow–net alpha relationship of the same fund in different time periods. In the first situation, 

shown on the left, the observations stay in an ellipse area. Consequently, the empirical fitted function 

(the black line) is an upward-sloping straight line. In the second situation, shown on the right, the 

observations stay in a crescent area, so the empirical fitted function (the black curve) is an increasing 

and convex curve. Thus, even though in theory, the flow-performance relationship at each time is 

increasing and convex, empirically, we can observe that this relationship is linear or convex. 

If we put different funds’ time-series observations of fund flows and fund performances 

together in a panel regression, the situation would be more complex. This is because in a panel 

regression, not only would the cross-sectional heterogeneity of functions mapping flows to performance 

affect the empirical findings of the curvature of this relationship [see the discussion in the introduction 

of Spiegel and Zhang (2013)], but also the dynamics over time of these functions would affect the 

findings. Therefore, we need to incorporate these two types of effect in our analyses simultaneously. 

We leave this empirical issue for future studies. 

6.2 Insights on the Flow-Performance Sensitivity and Market State 

Franzoni and Schmalz (2017) find that the flow-performance sensitivity is steeper when the 

market excess return (i.e., the aggregate risk factor) is moderate than when it is extreme. They explain 

this “hump-shape” flow-performance sensitivity by developing a two-period learning model in which 

investors learn both the manager’s skill and the loading of the fund’s portfolio to the market factor. They 

show that in equilibrium, fund performance is less informative about manager skill when factor 

realizations are larger in absolute value, resulting in a “hump-shape” flow-performance sensitivity. 
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However, as pointed out by Franzoni and Schmalz (2017), their model has a drawback: if the learning 

process has taken place for some more periods, the posterior estimates of manager skill and factor 

loading will be correlated, and this correlation can eliminate and even reverse the “hump shape” in the 

flow-performance sensitivity. Therefore, investors in their model learn and update the manager’s skill 

and the fund’s factor loading only once; then they rebalance their portfolios and pass on their holdings 

and beliefs to the next generation.54 In other words, the Franzoni and Schmalz’s (2017) model predicts 

the “hump-shape” flow-performance sensitivity for funds only in their earliest ages. 

Our model can consistently explain and predict the “hump-shape” flow-performance 

sensitivities not only for young funds but also for old funds. In our model, if we assume that fund gross 

alphas are less sensitive to manager abilities under extreme market conditions, i.e., 𝐴(𝑡, 𝜉௧) is smaller 

when the absolute value of market excess return is large, then we predict a “hump-shape” equilibrium 

flow-performance sensitivity in a continuous-time framework for funds with different ages, as shown 

in Equations (17) and (29). This assumption is realistic because during periods with extreme market 

conditions, the market liquidity and volatility are less predictable. This makes funds’ gross alphas less 

sensitive to manager abilities but more sensitive to luck. The lower sensitivity of gross alphas to 

manager abilities consequently reduces investors’ reaction to fund returns, decreasing the flow-

performance sensitivity. 

6.3 Insights on Fund Marketing Activities 

Current literature shows how funds’ marketing activities affect the flow-performance 

relationship. For example, Huang, Wei, and Yan (2007) find that funds with higher marketing expenses, 

in a fund family with star funds and in a large fund family, experience a less convex flow-performance 

relationship. They theoretically show that given fund-level participation barriers, new investors can 

cover their participation costs only if the fund performance improves. Thus, a fund with high 

participation cost has fund flows increasing faster with fund performance (as part of the flows are from 

new investors), resulting in a more convex flow-performance relationship. As marketing activities lower 

participation costs, funds with more marketing activities have a less convex flow-performance 

relationship. 

We do not explicitly model the fixed up-front participation cost, as Huang, Wei, and Yan (2007) 

 
54 See the discussions in Section 4.1 of Franzoni and Schmalz (2017). 
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do, but our model can explain the less convex flow-performance relationship due to more marketing 

activities. In our model, besides the variable fund costs, investors bear the other two types of cost over 

time: the management fee 𝑓  and the estimation error of manager ability 𝛾௧ . If funds’ marketing 

activities increase the former and/or decrease the latter, then the equilibrium flow-performance 

relationship shown in our model [in Equations (17) and (29)] is less convex. This is plausible. For 

example, the fund manager is likely to charge a higher management fee 𝑓  to cover additional 

marketing expenditures. Also, a fund’s performance is likely to be correlated with other funds’ 

performance in the same fund family,55 so promoting the fund family and its star funds could offer 

additional information for investors to estimate the fund manager’s ability, lowering the estimation error 𝛾௧ over time. 

7 Conclusion 

We introduce continuous-time rational models of the active fund management industry. We 

allow the dynamics of unobservable fund manager abilities and fund performances to follow a nonlinear 

framework and allow economic factors to influence these dynamics, thus the market equilibrium. Our 

model predicts that in equilibrium, flow-performance sensitivity and convexity are nonmonotonic over 

time, and the probability of fund exit changes with time and with fund size at any fund age. In particular, 

we study endogenous matching for managers of funds of funds, venture capital funds, and private equity 

funds, and show how to model effects of various economic factors on their portfolios. Further, we 

specialize our framework in three ways and demonstrate how each—cross-fund subsidization, manager 

replacement, and competition by new entrants—affects manager abilities and gross alpha productions 

and, consequently, induces nonmonotonicities in equilibrium. Our equilibrium results hold whether 

investors are risk neutral or mean-variance risk averse. On the other hand, if unobservable fund manager 

abilities and fund performances follow linear frameworks as in the current literature, equilibrium flow-

performance sensitivity and convexity change over time only monotonically, and old funds’ probability 

of exit changes with their size only. In our empirical study, we show nonmonotonicity in flow–net alpha 

sensitivity and convexity after controlling for the factors found in the current literature that would affect 

the flow–net alpha relationship and show that the probabilities of funds’ exit increase with fund age and 

decrease with fund size, even for old funds. Thus, our empirical results support our nonlinear framework. 

 
55 Also see the discussions in Brown and Wu (2016) and Choi, Kahraman, and Mukherjee (2016). 
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Our framework enhances the explanatory and predictive power of relationships and phenomena 

in the active fund management industry. We show that much of the empirical evidence in the current 

literature is consistent with our model. In particular, our theoretical results support, depending on 

coefficient values, both linear and convex empirical flow-performance relationship. We show that the 

flow-performance sensitivity is steeper when the market excess return is moderate at any fund age level, 

provided that fund gross alpha is less sensitive to manager ability under extreme market conditions. We 

also show that if marketing activities increase management fees and/or improve estimation precision of 

fund manager abilities, then the empirical flow-performance relationship is less convex. 

While this paper focuses on the flow-performance relationship, our nonlinear dynamic 

unobservable manager abilities can be used to model dynamic unobservable human abilities in other 

areas of finance, economics, and other social sciences.  
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Data Appendix 

This section details the definitions and constructions of the variables. 

• 𝐹𝑙𝑜𝑤௜,௧ is the fund flow, calculated as the difference between the monthly growth rate of the 

fund’s total net asset under management (TNA) and the fund’s monthly net return. It is in 

decimal. 

• 𝛼௜,௧ is the fund net alpha, calculated as the fund’s net return minus that of the fund’s style-

matching benchmark portfolio estimated on a 5-year rolling basis. It is in decimal. 

• 𝑃𝑜𝑠௜,௧ is a dummy variable, with 𝑃𝑜𝑠௜,௧ = 1 if 𝛼௜,௧ ≥ 0, and 𝑃𝑜𝑠௜,௧ = 0 otherwise. 

• 𝐴𝑔𝑒௜,௧ is the fund age. Fund age is calculated as the time since the inception of the fund’s oldest 

share class. It is in ten years. 

• ln𝐴𝑔𝑒௜,௧ is the natural logarithm fund age. 

• ln𝑇𝑁𝐴௜,௧ is the natural logarithm of the fund’s total net assets under management. The total net 

assets under management is in million dollars. 

• 𝑉𝑜𝑙௜,௧ is the fund volatility, calculated as the standard deviation of the fund’s net returns in the 

prior 12 months. It is in decimal. 

• 𝐷𝑖𝑠𝑝௜,௧ is the cross-sectional net alpha dispersion, calculated as the cross-sectional interquartile 

range of net alphas, and it is in decimal. 

• 𝐸𝑥𝑝𝑒𝑛𝑠𝑒௜,௧ is fund expense ratio, the ratio of total investment that shareholders pay for the 

fund’s operating expenses, including 12b-1 fees. It is in decimal. 

• 𝑇𝑢𝑟𝑛𝑂𝑣𝑒𝑟௜,௧  is fund turnover ratio, calculated as the minimum of aggregated sales and 

aggregated purchases of securities, divided by the average 12-month total net assets under 

management of the fund. It is in decimal. 

• 𝑆𝑡𝑦𝑙𝑒𝐹𝑙𝑜𝑤௜,௧ is style flow, calculated as the weighted-average flow of the fund class based on 

Lipper fund classification, and is in decimal. 

• 𝐹𝑎𝑚𝐴𝑙𝑝ℎ𝑎௜,௧ is fund family net alpha, calculated as the weighted average of the members’ net 

alphas excluding the net alphas of fund 𝑖, where the lagged net asset under management is the 

weight. It is in decimal. 

• ln𝐹𝑎𝑚𝑆𝑖𝑧𝑒௜,௧ is the natural logarithm of family size. Family size is the number of active equity 

funds that have net alpha observations in the family, and it is in integer. 

• 𝑀𝑅𝑃௧ is the market risk premium, calculated as the value-weight return on all NYSE, AMEX, 

and NASDAQ stocks (from CRSP) minus the one-month Treasury bill rate (from Ibbotson 

Associates). It is in decimal. 

• 𝑀𝑜𝑑௧ = 1 if −5% < 𝑀𝑅𝑃௧ିଵ < 5%, and 𝑀𝑜𝑑௧ିଵ = 0 otherwise. 

• 𝐸𝑃𝑈௧ is the three-component U.S. Economic Policy Uncertainty Index offered by the website 

http://www.policyuncertainty.com/. It is in decimal. 
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Figure 1 Flow–Net Alpha Sensitivity and Convexity with Fund Age 
Figure 1 illustrates the results of how flow–net alpha sensitivity and convexity change with fund age, 

in the upper plot and lower plot, respectively. The flow–net alpha sensitivity is expressed by 𝛿ଵ +∑ 𝛽௝൫𝐴𝑔𝑒௜,௧ିଵ൯௝ସ௝ୀଵ  , and the parameter values 𝛿ଵ  and 𝛽ଵ  to 𝛽ସ  are from the estimated coefficient 

values of model specification (5) of Table 2. The flow–net alpha convexity is expressed by 𝛿ଶ +∑ 𝜆௝൫𝐴𝑔𝑒௜,௧ିଵ൯௝ସ௝ୀଵ  , and the parameter values 𝛿ଶ  and 𝜆ଵ  to 𝜆ସ  are from the estimated coefficient 

values of model specification (5) in Table 3. The vertical axes of the upper and lower plots are flow–

net alpha sensitivity and convexity, respectively, and the horizontal axes of the two plots are 𝐴𝑔𝑒௜,௧ିଵ 

measured in ten years (e.g., 2.2 means 22 years.) 
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Figure 2. Examples of Fitting Observations of Fund Flows and Fund Net Alphas 

Figure 2 illustrates two situations of fitting observations of fund flows and fund net alphas on a two-

dimensional space. In each situation, each of the four blue dashed curves represents a function with 

fund net alpha (fund flow) as the independent variable (dependent variable) in a different time period 

for the same fund. Each of these functions is increasing and convex. The red circles represent the 

observations corresponding to these functions. Regarding the left (right) situation, the blue ellipse (blue 

crescent) indicates the area that the observations cover, and the black line (black curve) represents the 

empirical fitted function based on these observations. 
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Table 1. Summary Statistics 

Table 1 shows the summary statistics of our main sample, which contains 769 funds. The monthly 

observations from are January 1995 to December 2020. Flow is the fund percentage flow, calculated as 

the growth rate of total net asset under management minus fund net return, and it is in decimal. Fund 

Net Return is the fund return net of management expenses, 12b-fees, and front and rear load fees, and 

it is in decimal. Alpha is the fund net alpha 𝛼௜,௧ estimated by the style matching the model in Equation 

(45), and it is in decimal. The Style-Matching Model R-squared is the 𝑅ଶ that we get by running the 

style matching model in Equation (45), and it is in decimal. TNA is the fund’s total net asset under 

management measured in million dollars. Expense is the fund expense ratio as of the most recently 

completed fiscal year, including 12b-1 fees, and it is in decimal. Turnover is the fund turnover ratio, 

which is the minimum of aggregated sales and aggregated purchases of securities, divided by the 

average 12-month total net assets under management of the fund. It is in decimal. Age is the fund age, 

calculated as the time since the inception of the oldest share class, and it is in 10 years. Vol is the fund 

volatility, calculated as the standard deviation of the fund’s net returns in the prior 12 months, and it is 

in decimal. Disp is the cross-sectional net alpha dispersion, calculated as the cross-sectional standard 

deviation of net alphas, and it is in decimal. StyleFlow is style flow, calculated as the weighted-average 

flow of the fund class based on Lipper fund classification, and it is in decimal. FamAlpha is the fund 

family’s net alpha, calculated as the weighted average of the family members’ net alphas, excluding the 

net alpha of the fund under consideration, where the lagged net asset under management is the weight, 

and it is in decimal. FamSize is the fund family size, calculated as the number of coexisting active equity 

funds in the family, and it is a number. MRP is market risk premium and it is in decimal. Mod is a 

dummy variable to indicate months with moderate 𝑀𝑅𝑃௧, and it is equal to one if −5% < 𝑀𝑅𝑃௧ <5%, and zero otherwise. EPU is the three-component U.S. Economic Policy Uncertainty Index. The 

detailed definitions of the variables are in the Data Appendix. 
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Variable Observation Mean Standard
Deviation

1st 25th 50th 75th 99th

Fund Variables
Fund Flow (Decimal), Flow 190405 0.0006 0.3129 -0.1058 -0.0141 -0.0054 0.0048 0.1423
Fund Net Return (Decimal), Ret 190405 0.0085 0.0524 -0.1460 -0.0176 0.0127 0.0387 0.1346
Fund Net Alpha (Decimal), Alpha 190405 -0.0001 0.0189 -0.0504 -0.0089 -0.0003 0.0084 0.0510
Style-Matching Model R-Squared  (Decimal) 190243 0.8845 0.0869 0.5870 0.8484 0.9054 0.9440 0.9884
Fund Total Net Asset (in 1 Million Dollar), TNA 190405 2946.12 9127.67 9.80 217.90 711.50 2156.60 44155.00
Fund Expense (Decimal), Expense 190405 0.0113 0.0037 0.0028 0.0091 0.0110 0.0132 0.0218
Fund Turn Over Ratio (Decimal), TurnOver 190405 0.7409 0.6073 0.0300 0.3261 0.5900 0.9700 2.9000
Fund Age (10 Years), Age 190405 2.2808 1.5728 0.5167 1.2417 1.8667 2.7167 7.9000
Fund Volatility (Decimal), Vol 190405 0.0466 0.0220 0.0148 0.0304 0.0423 0.0580 0.1139
Style Flow (Decimal), StyleFlow 190405 0.0007 0.0106 -0.0221 -0.0048 -0.0005 0.0052 0.0326
Family Net Alpha (Decimal), FamAlpha 190405 -0.0001 0.1336 -0.0377 -0.0060 -0.0003 0.0053 0.0369
Family Size (Number), FamSize 190405 12.3393 11.6432 2 4 9 16 59

Market Variable
Net Alpha Dispersion (Decimal), Disp 311 0.0195 0.0085 0.0103 0.0138 0.0173 0.0226 0.0450
Market Risk Premium (Decimal), MRP 312 0.0076 0.0451 -0.1072 -0.0191 0.0134 0.0349 0.1018
Month with Moderate MRP  (Dummy), Mod 312 0.7468 0.4355 0.0000 0.0000 1.0000 1.0000 1.0000
Economic Policy Uncertainty Index (Decimal), EPU 312 112.9226 44.0272 59.3240 81.0937 100.3744 133.2089 268.6164

Percentile
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Table 2. Flow–Net Alpha Sensitivity and Fund Age 

Table 2 reports the results of the model in Equation (46). The dependent variable is Flow, the fund 

percentage flow. The explanatory variables are lagged by one month. The detailed definitions of the 

variables are in the Data Appendix. Standard errors that are clustered by fund and by year are presented 

in parentheses. The symbols ***, **, and * represent the 1%, 5%, and 10% significance levels, 

respectively, in a two-tail t-test. 
(1) (2) (3) (4) (5)

Alpha 0.1645*** 0.2998*** 0.3482*** 0.4058*** 0.4729***
(0.0172) (0.0794) (0.0810) (0.0833) (0.0945)

Alpha*Age -0.0312*** -0.0948*** -0.1840*** -0.3115***
(0.0064) (0.0198) (0.0442) (0.0943)

Alpha*Age 2 0.0095*** 0.0398*** 0.1106**
(0.0023) (0.0121) (0.0440)

Alpha*Age 3 -0.0027*** -0.0167**
(0.0010) (0.0078)

Alpha*Age 4 0.0009*
(0.0005)

Age -0.0473*** -0.0486*** -0.0524*** -0.0602*** -0.0644***
(0.0092) (0.0091) (0.0091) (0.0093) (0.0100)

Age 2 0.0007*** 0.0035*** 0.0057***
(0.0001) (0.0005) (0.0020)

Age 3 -0.0002*** -0.0007*
(0.0000) (0.0003)

Age 4 0.0000
(0.0000)

Alpha*lnTNA -0.0066 -0.0049 -0.0044 -0.0042
(0.0060) (0.0060) (0.0061) (0.0062)

Alpha*Vol -0.3578*** -0.4025*** -0.4306*** -0.4451***
(0.0723) (0.0766) (0.0780) (0.0778)

Alpha*Disp -0.7393 -0.9607 -1.0677 -1.0867
(0.8187) (0.8475) (0.8813) (0.8950)

Alpha*Mod 0.0632** 0.0675*** 0.0692*** 0.0684***
(0.0231) (0.0233) (0.0235) (0.0235)

Alpha*EPU -0.0001 0.0000 0.0001 0.0001
(0.0004) (0.0004) (0.0004) (0.0004)

lnTNA -0.0034*** -0.0033*** -0.0032*** -0.0030*** -0.0030***
(0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

Vol 0.0068 0.0088 0.0059 0.0078 0.0080
(0.0285) (0.0311) (0.0305) (0.0304) (0.0305)

Disp -0.0398 -0.0378 -0.0370 -0.0363 -0.0361
(0.0506) (0.0493) (0.0492) (0.0491) (0.0491)

Mod 0.0003 0.0004 0.0004 0.0004 0.0004
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

EPU -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Expense -0.5960** -0.5910** -0.6417** -0.6828** -0.6741**
(0.2747) (0.2733) (0.2730) (0.2750) (0.2753)

TurnOver -0.0020*** -0.0020*** -0.0019*** -0.0019*** -0.0019***
(0.0006) (0.0006) (0.0006) (0.0006) (0.0006)

StyleFlow 0.2646*** 0.2616*** 0.2579*** 0.2576*** 0.2572***
(0.0438) (0.0429) (0.0429) (0.0427) (0.0427)

Flow 0.0123** 0.0122** 0.0121** 0.0120** 0.0120**
(0.0056) (0.0056) (0.0055) (0.0055) (0.0055)

FamAlpha 0.0004** 0.0004** 0.0004** 0.0004** 0.0004*
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

lnFamSize -0.0005 -0.0005 -0.0004 -0.0004 -0.0004
(0.0009) (0.0009) (0.0009) (0.0009) (0.0009)

Constant 0.1375*** 0.1400*** 0.1425*** 0.1469*** 0.1486***
(0.0206) (0.0204) (0.0203) (0.0202) (0.0203)

Year Fixed Effects Yes Yes Yes Yes Yes
Fund Fixed Effects Yes Yes Yes Yes Yes

Observations 190,405 190,405 190,405 190,405 190,405
R-squared 0.0493 0.0501 0.0510 0.0517 0.0518
Adjusted R-squared 0.0453 0.0460 0.0469 0.0477 0.0477   
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Table 3. Flow–Net Alpha Convexity and Fund Age 

Table 3 reports the results of the model in Equation (47). The dependent variable is Flow, the fund 

percentage flow. The explanatory variables are lagged by one month. Other control variables of model 

specifications (1) to (5) are the same as those of model specifications (1) to (5) in Table 2, respectively. 

The detailed definitions of the variables are in the Data Appendix. Standard errors that are clustered by 

fund and by year are presented in parentheses. The symbols ***, **, and * represent the 1%, 5%, and 

10% significance levels, respectively, in a two-tail t-test. 

(1) (2) (3) (4) (5)
Alpha 0.1029*** 0.2138*** 0.1914** 0.1735* 0.1070

(0.0252) (0.0689) (0.0698) (0.0913) (0.1107)
Alpha*Pos 0.1081* 0.2459*** 0.3815*** 0.5286*** 0.8058***

(0.0630) (0.0445) (0.0844) (0.1360) (0.1737)
Alpha*Pos*Age -0.0493** -0.2038*** -0.4663*** -1.0405***

(0.0187) (0.0699) (0.1558) (0.2654)
Alpha*Pos*Age 2 0.0278*** 0.1342*** 0.4655***

(0.0099) (0.0456) (0.1246)
Alpha*Pos*Age 3 -0.0106*** -0.0780***

(0.0037) (0.0226)
Alpha*Pos*Age 4 0.0043***

(0.0014)
Alpha*Age -0.0059 0.0099 0.0591 0.2127

(0.0084) (0.0313) (0.0796) (0.1295)
Alpha*Age 2 -0.0047 -0.0291 -0.1199*

(0.0042) (0.0232) (0.0596)
Alpha*Age 3 0.0027 0.0215*

(0.0019) (0.0107)
Alpha*Age 4 -0.0012*

(0.0006)
Pos 0.0003 -0.0008** -0.0008*** -0.0008*** -0.0008***

(0.0004) (0.0003) (0.0003) (0.0003) (0.0003)
Alpha*lnTNA -0.0070 -0.0049 -0.0047 -0.0045

(0.0058) (0.0059) (0.0060) (0.0061)
Alpha*Vol -0.5706*** -0.6580*** -0.6972*** -0.7314***

(0.0869) (0.0998) (0.1034) (0.1035)
Alpha*Disp -1.3410 -1.5096 -1.5702 -1.5869

(0.8549) (0.8857) (0.9245) (0.9412)
Alpha*Mod 0.0601** 0.0640** 0.0650** 0.0639**

(0.0231) (0.0234) (0.0236) (0.0237)
Alpha*EPU -0.0001 0.0001 0.0001 0.0001

(0.0003) (0.0003) (0.0003) (0.0003)
Constant 0.1374*** 0.1397*** 0.1410*** 0.1443*** 0.1442***

(0.0208) (0.0205) (0.0205) (0.0204) (0.0205)
Other Controls Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
Fund Fixed Effects Yes Yes Yes Yes Yes

Observations 190,405 190,405 190,405 190,405 190,405
R-squared 0.0495 0.0505 0.0514 0.0522 0.0523
Adjusted R-squared 0.0455 0.0464 0.0473 0.0481 0.0482  
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Table 4. Flow–Net Alpha Sensitivity and Convexity: Results of Individual Funds 

Table 4 reports the number of funds whose relevant coefficients in the models in Equations (46) and 

(47) are significant; these numbers are in Panel A and Panel B, respectively. The models are 𝐹𝑙𝑜𝑤௜,௧ = 𝛿଴ + 𝛿ଵ𝛼௜,௧ିଵ + ∑ 𝛽௝𝛼௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝ + ∑ 𝑑௝൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝ + 𝛿 ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ିଵ + 𝜙௧ +𝜐௜ + 𝜀௜,௧, and 𝐹𝑙𝑜𝑤௜,௧ = 𝛿଴ + 𝛿ଵ𝛼௜,௧ିଵ + ∑ 𝛽௝𝛼௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝ + ∑ 𝑑௝൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝ +∑ 𝜆௝𝛼௜,௧ିଵ𝑃𝑜𝑠௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯௝௝ + 𝛿ଶ𝛼௜,௧ିଵ𝑃𝑜𝑠௜,௧ିଵ + 𝛿ଷ𝑃𝑜𝑠௜,௧ିଵ + 𝛿 ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠௜,௧ିଵ + 𝜙௧ + 𝜐௜ + 𝜀௜,௧ . 
We set 𝑗 = 4 for the above two models. The total number of funds in these tests is 769, and the models 

are run on each fund. The variables of these two models are the same as those in model specification 

(5) in Table 2 and Table 3, respectively, except that we do not include the fund dummies and year 

dummies. Newey-West estimator is used to estimate the standard errors, with the maximum lag of 12 

to be considered in the autocorrelation structure of the regression error. The symbols ***, **, and * 

represent the 1%, 5%, and 10% significance levels, respectively, in a two-tail t-test. The last column 

shows the number of funds whose relevant coefficients are significant at least at the 10% significance 

level in a two-tail t-test. 

Panel A: The Model in Equation (46) Flow–Net Alpha Sensitivity 
Significance * ** *** Total 𝛽ଵ > 0 37 37 11 85 𝛽ଵ < 0 26 29 15 70 𝛽ଶ > 0 27 28 14 69 𝛽ଶ < 0 36 37 12 85 𝛽ଷ > 0 32 39 12 83 𝛽ଷ < 0 25 30 11 66 𝛽ସ > 0 28 28 11 67 𝛽ସ < 0 36 39 12 87 

 
Panel B: The Model in Equation (47) Flow–Net Alpha Convexity 

Significance * ** *** Total 𝜆ଵ > 0 32 35 15 82 𝜆ଵ < 0 24 36 25 85 𝜆ଶ > 0 26 38 21 85 𝜆ଶ < 0 30 34 17 81 𝜆ଷ > 0 26 36 17 79 𝜆ଷ < 0 31 38 17 86 𝜆ସ > 0 35 37 18 90 𝜆ସ < 0 27 32 19 78 
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Table 5. Fund Survival Rate and Fund Age 

Table 5 reports the survival rates of funds at different fund age levels. The rows show the time that the 

funds can survive, and the columns show the ages of the funds, with the last column showing the average 

survival rate across all fund ages in our extended sample. 

Fund Age 10 years 15 years 20 years 25 years 30 years 35 years 40 years Sample Average
Survive in 1 year 96.18% 96.73% 97.20% 97.75% 98.80% 99.34% 98.89% 96.89%
Survive in 2 years 92.61% 94.96% 95.21% 97.25% 97.99% 96.71% 95.56% 94.15%
Survive in 3 years 89.99% 92.30% 92.54% 95.75% 97.59% 94.08% 95.56% 91.73%
Survive in 4 years 87.44% 90.18% 90.68% 95.00% 96.39% 93.42% 93.33% 89.60%
Survive in 5 years 84.77% 88.94% 89.48% 94.25% 93.98% 92.76% 91.11% 87.72%  
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Table 6. Probability of Fund Exit and Fund Age 

Table 6 reports the results of the panel logit model in Equation (48). Column (1) reports the results of 

our whole extended sample, whereas columns (2), (3), (4), and (5) report the results of subsamples 

where funds’ ages are above 10 years, above 15 years, above 20 years, and above 25 years, respectively. 

The dependent variable is Exit, which is one if the fund exits the market and zero otherwise. The 

explanatory variables are lagged by one month. The detailed definitions of the variables are in the Data 

Appendix. Fund random effects and year fixed effects are included in the panel logit model. Coefficients 

of the explanatory variables are reported. Standard errors that are clustered by fund and by year are 

presented in parentheses. The symbols ***, **, and * represent the 1%, 5%, and 10% significance levels, 

respectively, in a two-tail t-test. 

(1) (2) (3) (4) (5)
All Age > 10 years Age > 15 years Age > 20 years Age > 25 years

Age 0.1051*** 0.1311*** 0.2774*** 0.2294** 0.5091**
(0.0340) (0.0506) (0.0879) (0.0986) (0.2160)

lnTNA -0.4101*** -0.5430*** -0.7292*** -0.7308*** -1.0955***
(0.0253) (0.0433) (0.0982) (0.1098) (0.2968)

Flow -4.5150*** -4.8524*** -4.8603*** -5.5277*** -6.5042***
(0.2352) (0.3554) (0.5472) (0.7262) (1.3238)

Alpha -3.3538*** -7.4971** -4.8451 -13.7987*** -11.0651
(0.7408) (3.5552) (4.1532) (3.7124) (7.3056)

Vol -3.8147 -7.4064** -12.7267** -16.0235** -15.0987
(2.4771) (3.7360) (5.8578) (6.7914) (10.7120)

Disp -13.2655 -18.1927 -24.8829* -30.1823 12.0848
(8.2239) (11.3132) (14.4811) (20.1245) (25.0204)

Mod 0.1802* 0.1767 0.1978 0.1433 0.3176
(0.1070) (0.1393) (0.1808) (0.2488) (0.3655)

EPU 0.0004 0.0016 0.0014 0.0010 -0.0044
(0.0015) (0.0020) (0.0025) (0.0033) (0.0048)

Expense -0.9580 -5.7381 28.0372** 7.5810 -29.8784
(5.1402) (6.2371) (13.9906) (26.5660) (43.9043)

TurnOver 0.1743*** 0.2303*** 0.3525*** 0.3187*** 0.4058
(0.0405) (0.0598) (0.0881) (0.1112) (0.2854)

StyleFlow 0.0452*** 0.0482*** -10.0412 -3.2099 -3.6440
(0.0049) (0.0047) (6.8194) (9.0784) (13.4901)

FamAlpha -6.4941 0.0043 -1.9275 -1.4659 4.2348
(4.8169) (0.0640) (5.3084) (7.0326) (10.4950)

lnFamSize 0.3478*** 0.4282*** 0.6041*** 0.7682*** 1.2107***
(0.0474) (0.0633) (0.1170) (0.1512) (0.2978)

Constant -5.2954*** -4.7993*** -4.6575*** -4.7831*** -5.7979***
(0.4050) (0.5510) (0.7801) (1.0742) (1.7506)

Year Fixed Effects Yes Yes Yes Yes Yes
Fund Random Effects Yes Yes Yes Yes Yes

Observations 320,344 215,841 143,168 89,592 56,284
Number of Funds 3,030 2,010 1,382 944 565  
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Internet Appendix 

This Internet Appendix provides the proofs and discussions of results of in Sections 2 and 3, 

the simulation results of our theory, and additional empirical results. 

1 Mathematical Proofs and Further Discussions of the Theoretical Model 

This section provides the proofs, discussions, and additional explanations of the theoretical 

results in the corresponding sections. 

Explanations of How to Solve the Nonlinear System of Fund Returns and Manager Abilities in 
Section 2.1 and Further Discussions of Our Model’s Differences from Classical Models 

We proceed by, first, characterizing one evolution path induced by a set of constant coefficients. 

Inferred Abilities and Their Precision Under Constant Coefficients 

For the special case in which the coefficients 𝑎଴  𝑎ଵ , 𝑏ଵ , 𝑏ଶ , 𝐴 , and 𝐵  are constants, 

Equations (3)–(7) construct a linear framework that can be solved by linear filtering techniques. Given 𝛾଴ , 𝛾௧  becomes deterministic as shown by Equation (6). Consequently, 𝜎௠(𝛾௧) , the sensitivity of 

expected manager ability to innovation shocks in fund gross alpha is dynamic but deterministic. Also, 𝑚௧ is stochastic.1 Therefore, investors know the precision of their future estimates of manager ability 

in advance but do not know the future inferred abilities. In this case, depending on parameter values, 𝛾௧ monotonically increases or decreases to a nonnegative steady state,2 or stays unchanged in it over 

time.3 Consequently, depending on parameter values, 𝜎௠(𝛾௧) monotonically increases or decreases to 𝜎௠(𝛾௧)’s steady state, or stays unchanged in this steady state over time.4 

Inferred Abilities and Their Precision Under Stochastic Coefficients 

Stochastic coefficients induce inferred abilities and their precision to switch at every time point 

among evolution paths. Each of these evolution paths is induced by a set of constant parameters/linear 

 
1  The fact that the random process (𝜃௧ , 𝜉௧) , 0 ≤ 𝑡 ≤ 𝑇  is conditionally Gaussian, given ℱ௧క ,  facilitates the 
generation of the posterior estimate of gross alphas in closed form. 
2 As we study the processes in the period 0 ≤ 𝑡 ≤ 𝑇, we allow 𝑇 to be sufficiently large (i.e., 𝑇 → ∞) so that 𝛾௧ can achieve its steady state. 
3 The expression of 𝑑𝛾௧ with constant parameter values implies that 𝛾௧ follows a Riccati equation and 𝛾௧ has 
a steady state. See Corollary 1.2 in Feldman (1989). 
4 We note that even under the constant parameter values, there is a “knife edge” case in which the dynamics of 𝛾௧ might induce a transient nonmonotonic time pattern of the local variance of inferred abilities to innovation 
shocks, 𝜎௠ଶ (𝛾௧) . This can be seen from Equation (7). A negative 𝑏ଶ  induces a negative 
instantaneous/idiosyncratic correlation, (𝑏ଶ𝐵). Then, the dynamic weight 𝛾௧ may induce the expression 𝑏ଶ𝐵 +𝐴𝛾௧ to change sign, inducing a decreasing-increasing 𝜎௠ଶ (𝛾௧). Detailed analysis of this nonmonotonicity is in 
Feldman (1989, Proposition 4). 
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system, as described above. In contrast to the case of constant coefficients, this switching induces 

nonmonotonicity in the evolutions of inferred ability precision, 𝛾௧ , which, in turn, induces 

nonmonotonicity in the sensitivities of inferred abilities to innovation shocks, 𝜎௠(𝛾௧). Then, under this 

framework, there are no steady states for 𝛾௧ and 𝜎௠(𝛾௧), which are forever dynamic. 

The dynamics of 𝛾௧ is one of the key differences between our model and BG’s and models 

subsequent to theirs. In those models, the observable fund gross alpha equals the unobservable manager 

ability, an unknown constant, plus a Gaussian noise term. When investors update their estimates of 

manager ability with a Gaussian prior, the precision of their posterior estimates of that ability 

consistently increases over time as more observations are realized. In this case, over time, investors’ 

estimates of manager ability become less sensitive to the innovation shocks in fund returns. In contrast 

to those studies, within our more general structure, precision of investors’ estimates of manager abilities 

can be nonmonotonic over time. Then, in turn, sensitivities of inferred manager ability to the innovation 

shocks in fund returns can be nonmonotonic over time. These features generate a framework that has 

stronger theoretical and empirical explanatory and predictive powers in studying the flow-performance 

relationship. 

Proof of Results in Section 2.3 

The first-order condition with respect to 𝑞௧௔ on the right-hand side of Equation (13), identifies 𝑞௧௔∗ as 

 𝑞௧௔∗ = 𝐴(𝑡, 𝜉௧)𝑚௧2𝑐 . (A1) 

The second-order condition −2𝑐 < 0 shows that 𝑞௧௔∗ induces a maximum. Substituting Equation (A1) 

into Equation (13), the fund manager’s optimal profit is 

 𝑓𝑞௧∗ = [𝐴(𝑡, 𝜉௧)𝑚௧]ଶ4𝑐 . (A2) 

Rearranging, the optimal fund size is 

 𝑞௧∗ = [𝐴(𝑡, 𝜉௧)𝑚௧]ଶ4𝑐𝑓 . (A3) 

Dividing Equation (A1) by Equation (A3) gives 

 𝑞௧௔∗𝑞௧∗ = 2𝑓𝐴(𝑡, 𝜉௧)𝑚௧ . (A4) 

Here we assume that the manager sets 𝑓 sufficiently low such that the constraint 0 ≤ 𝑞௧௔∗ ≤ 𝑞௧∗ is 

automatically satisfied and we do not incorporate this constraint in the optimization. 

Also, substituting Equations (A1) and (A3) into Equation (9), we characterize the fund net alpha 
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and gross alpha evolution relationship as 

 𝑑𝑆௧𝑆௧ = 2𝑓𝐴(𝑡, 𝜉௧)𝑚௧ 𝑑𝜉௧𝜉௧ − 2𝑓𝑑𝑡. (A5) 

Finally, substituting Equation (5) into Equation (A5), we have the fund net alpha evolution 

 𝑑𝑆௧𝑆௧ = 2𝑓𝐵(𝑡, 𝜉௧)𝐴(𝑡, 𝜉௧)𝑚௧ 𝑑𝑊ഥ௧ . (A6) 

Thus, in equilibrium, the fund net alpha is normally distributed with mean zero and variance that 

decreases in inferred ability. That is, the higher the inferred ability, the lower is the noisy shocks’ effect 

on net alpha. 

Applying Itô’s Lemma on 𝑞௧∗ to Equation (A3) to derive 𝑑𝑞௧∗ and then dividing 𝑑𝑞௧∗ by 𝑞௧∗ 
defined by Equation (A3), yields 

 𝑑𝑞௧∗𝑞௧∗ = 2𝐴ଶ(𝑡, 𝜉௧)𝑚௧𝑑𝑚௧ + 𝐴ଶ(𝑡, 𝜉௧)(𝑑𝑚௧)ଶ[𝐴(𝑡, 𝜉௧)𝑚௧]ଶ = 2𝑚௧𝑑𝑚௧ + (𝑑𝑚௧)ଶ𝑚௧ଶ . (A7) 

Substituting Equation (4) (for the 𝑑𝑚௧ terms) into Equation (A7) and then Equation (3) into 

the 𝑑𝑊ഥ௧ term yields 

 𝑑𝑞௧∗𝑞௧∗ = 2𝜎௠(𝛾௧)𝑚௧𝐵(𝑡, 𝜉௧) ൬𝑑𝜉௧𝜉௧ ൰ + 𝜎௠ଶ (𝛾௧)𝑚௧ଶ𝐵ଶ(𝑡, 𝜉௧) ൬𝑑𝜉௧𝜉௧ ൰ଶ+ 2𝑚௧ ቈ(𝑎଴(𝑡, 𝜉௧) + 𝑎ଵ(𝑡, 𝜉௧)𝑚௧) − 𝐴(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝑚௧𝐵(𝑡, 𝜉௧) ቉ 𝑑𝑡. (A8) 

We substitute Equation (A5) into the flow-performance relation in Equation (A8) so that performance 

is measured by net alphas. We have 

 𝑑𝑞௧∗𝑞௧∗ = 𝐴(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝑓𝐵(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ + 𝐴ଶ(𝑡, 𝜉௧)𝜎௠ଶ (𝛾௧)4𝑓ଶ𝐵ଶ(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ଶ 

+2 ቈ𝑎଴(𝑡, 𝜉௧)𝑚௧ + 𝑎ଵ(𝑡, 𝜉௧)቉ 𝑑𝑡. (A9) 

Q.E.D. 

Proof of Results in Section 2.4 

Going through the same process as the previous proof, we have a similar equilibrium 

relationship between fund flows and expected manager abilities: 

 𝑑𝑞௧∗𝑞௧∗ = 2𝑚௧𝑑𝑚௧ + (𝑑𝑚௧)ଶ𝑚௧ଶ . (A10) 

Then, we directly substitute Equation (19) into (A10) and have 

 𝑑𝑞௧∗𝑞௧∗ = 2𝛾௧𝐵ଶ𝑚௧ ൬𝑑𝜉௧𝜉௧ ൰ + 𝛾௧ଶ𝐵ସ𝑚௧ଶ ൬𝑑𝜉௧𝜉௧ ൰ଶ − 2𝛾௧𝐵ଶ 𝑑𝑡. (A11) 

Substituting Equations (A5) and (20) into Equation (A11) (with 𝐴 = 1), we have 

 𝑑𝑞௧∗𝑞௧∗ = 1𝑓 ൬ 𝛾଴𝐵ଶ + 𝛾଴𝑡൰ ൬𝑑𝑆௧𝑆௧ ൰ + 14𝑓ଶ ൬ 𝛾଴𝐵ଶ + 𝛾଴𝑡൰ଶ ൬𝑑𝑆௧𝑆௧ ൰ଶ. (A12) 
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Q.E.D. 

Proof and Additional Discussion of Results in Section 2.5 

Substituting Equation (9) and then Equation (5) into Equation (26), and regarding 𝑞௧௔, 𝑞௧, and 𝑓  as exogenous to the investor, we calculate E ቂௗ௣೟௣೟ ቚ ℱ௧కቃ  and Var ቂௗ௣೟௣೟ ቚ ℱ௧కቃ . Then, the investor’s 

problem becomes 

 max௪೟ᇱ௦
ቈ𝑤௧ ቆ𝑞௧௔𝑞௧ 𝐴(𝑡, 𝜉௧)𝑚௧ − 𝑐𝑞௧௔ଶ𝑞௧ − 𝑓ቇ + 𝜇௣቉ 𝑑𝑡

ඨቈ𝑤௧ଶ ൬𝑞௧௔𝑞௧ ൰ଶ 𝐵ଶ(𝑡, 𝜉௧) + 𝜎௣ଶ቉ 𝑑𝑡 , (A13) 

subject to 

 0 ≤ 𝑤௧ ≤ 1. (A14) 

At each time 𝑡, the first-order condition with respect to 𝑤௧ generates the optimal weight 𝑤௧∗: 
 𝑤௧∗ = ቆ𝑞௧௔𝑞௧ 𝐴(𝑡, 𝜉௧)𝑚௧ − 𝑐𝑞௧௔ଶ𝑞௧ − 𝑓ቇ𝜎௣ଶ൬𝑞௧௔𝑞௧ ൰ଶ 𝐵ଶ(𝑡, 𝜉௧)𝜇௣ . (A15) 

The second-order condition is satisfied (the proof is omitted for brevity), so 𝑤௧∗ is the maximizer. 

As investors face the same risk-return tradeoff and have the same objective function, they all 

make the same optimal decision of 𝑤௧∗. Here, the amount of wealth allocated to the fund, i.e., the fund’s 

size, is 

 𝑞௧ = 𝑤௧∗𝑉 = 𝑉 ቆ𝑞௧௔𝑞௧ 𝐴(𝑡, 𝜉௧)𝑚௧ − 𝑐𝑞௧௔ଶ𝑞௧ − 𝑓ቇ𝜎௣ଶ൬𝑞௧௔𝑞௧ ൰ଶ 𝐵ଶ(𝑡, 𝜉௧)𝜇௣ . (A16) 

By rearranging Equation (A16), we can express the fund manager’s profit as 

 𝑓𝑞௧ = −𝑞௧௔ଶ𝐵ଶ(𝑡, 𝜉௧)𝜇௣𝑉𝜎௣ଶ − 𝑐𝑞௧௔ଶ + 𝑞௧௔𝐴(𝑡, 𝜉௧)𝑚௧ ≜ 𝑔(𝑞௧௔). (A17) 

The fund manager’s objective is to maximize the fund’s profit, 𝑓𝑞௧, and to do so, the manager has to 

choose 𝑞௧௔ to maximize the right-hand side of Equation (A17). Thus, the manager’s problem can be 

written as 

 max௤೟ೌ − 𝑞௧௔ଶ𝐵ଶ(𝑡, 𝜉௧)𝜇௣𝑉𝜎௣ଶ − 𝑐𝑞௧௔ଶ + 𝑞௧௔𝐴(𝑡, 𝜉௧)𝑚௧ , (A18) 

subject to 

 0 ≤ 𝑞௧௔ ≤ 𝑞௧ . (A19) 

Here, 𝑞௧ and 𝑉 are exogenous to the manager so are unaffected by his/her choice of 𝑞௧௔. Then, the 

first-order condition with respect to 𝑞௧௔ generates the optimal weight 𝑞௧௔∗: 
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 𝑞௧௔∗ = 𝐴(𝑡, 𝜉௧)𝑚௧𝑉𝜎௣ଶ2ൣ𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ൧. (A20) 

The second-order condition is −ଶ஻మ(௧,క೟)ఓ೛௏ఙ೛మ − 2𝑐 < 0, showing that 𝑞௧௔∗ is a maximizer. 

Then, after substituting Equation (A20) into Equation (A17) and rearranging, we have the 

optimal fund size: 

 𝑞௧∗ = [𝐴(𝑡, 𝜉௧)𝑚௧]ଶ𝑉𝜎௣ଶ4𝑓ൣ𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ൧. (A21) 

We can see that 

 𝑞௧௔∗𝑞௧∗ = 2𝑓𝐴(𝑡, 𝜉௧)𝑚௧ . (A22) 

We assume that manager 𝑖  sets 𝑓  sufficiently low such that the condition 0 ≤ 𝑞௧௔∗ ≤ 𝑞௧∗  is 

automatically satisfied, and we do not incorporate this constraint in the optimization problem in 

Equation (A18). 

The fund manager’s optimal profit is 

 𝑓𝑞௧∗ = [𝐴(𝑡, 𝜉௧)𝑚௧]ଶ𝑉𝜎௣ଶ4ൣ𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ൧. (A23) 

A fund manager’s higher expected ability and a higher benchmark volatility induce a higher optimal 

profit. On the other hand, a higher fund gross alpha volatility, a higher benchmark mean return, and 

higher fund cost sensitivity to size, induce a lower optimal profit. 

Then, substituting Equations (A20) and (A21) into Equation (9), we get a relation between net 

alpha and gross alpha as follows: 

 𝑑𝑆௧𝑆௧ = 2𝑓𝐴(𝑡, 𝜉௧)𝑚௧ 𝑑𝜉௧𝜉௧ − 𝑓𝑐𝑉𝜎௣ଶ𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ 𝑑𝑡 − 𝑓𝑑𝑡
= 𝑓 ቆ 2𝐴(𝑡, 𝜉௧)𝑚௧ 𝑑𝜉௧𝜉௧ − 𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 2𝑐𝑉𝜎௣ଶ𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ 𝑑𝑡ቇ. (A24) 

Then, substituting Equation (5) into Equation (A24), we have the fund net alpha: 

 𝑑𝑆௧𝑆௧ = 𝑓𝐵ଶ(𝑡, 𝜉௧)𝜇௣𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ 𝑑𝑡 + 2𝑓𝐵(𝑡, 𝜉௧)𝐴(𝑡, 𝜉௧)𝑚௧ 𝑑𝑊ഥ௧ . (A25) 

Examining drift term on the right-hand side of Equation (A25), we can see that, on average, funds’ net 

alphas increase with management fees,5  𝑓 , funds’ gross alphas volatility, 𝐵(𝑡, 𝜉௧) , and benchmark 

mean return, 𝜇௣. On the other hand, funds’ net alphas, on average, decrease with funds’ cost sensitivity 

to size, 𝑐, and benchmark volatility, 𝜎௣ଶ. Further, Equation (A25) shows that expected funds’ net alphas 

(conditional on current information) is positive where investors are risk-averse because all the 

coefficients in the drift term are positive. This is because compared with the passive benchmark 

 
5  A higher fee discourages investments to the fund, decreasing the fund's size. At a lower fund size, due to 
decreasing returns to scale, a manager is able to produce higher returns to investors. 
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portfolio, the active fund is a riskier asset, thus, has to provide a higher expected return to attract 

investments. This result is consistent with the one in Pastor and Stambaugh (2012), Feldman, Saxena, 

and Xu (2020), and Feldman and Xu (2023a). 

Substituting Equations (A20) and (A21) into Equation (A15), we have the optimal weight 

allocated to the active fund as 

 𝑤௧∗ = [𝐴(𝑡, 𝜉௧)𝑚௧]ଶ𝑉𝜎௣ଶ4𝑓ൣ𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ൧. (A26) 

As 𝑚௧ ≥ 𝑚௧ ≥ 0 and all other coefficients on the right-hand side of Equation (A26) are positive, we 

have 𝑤௧∗ ≥ 0, i.e., investors do not short sell the active fund. Also, with a sufficiently large 𝜇௣ or a 

sufficiently small 𝜎௣ଶ, we have 𝑤௧∗ ≤ 1. The intuition is that as long as the passive benchmark portfolio 

provides sufficiently high expected return or sufficiently low risk, investors do not short sell it. These 

results are realistic because, in reality, we observe that investors invest part of their wealth in active 

funds and another part in passive benchmark portfolios. Then, the condition 0 ≤ 𝑤௧ ≤ 1  is 

automatically satisfied and we do not incorporate this constraint in solving the investors’ optimization 

problems. 

Then, substituting Equations (A22) and (A26) into Equation (A13), we have the investor’s 

optimal instantaneous Sharpe ratio at time 𝑡: 
 ቈ [𝐴(𝑡, 𝜉௧)𝑚௧]ଶ𝜎௣ଶ4𝑓ൣ𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ൧ × 𝑓𝐵ଶ(𝑡, 𝜉௧)𝜇௣𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ + 𝜇௣቉ 𝑑𝑡

ඨ൥ቆ [𝐴(𝑡, 𝜉௧)𝑚௧]ଶ𝜎௣ଶ4𝑓ൣ𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ൧ቇଶ ൬ 2𝑓𝐴(𝑡, 𝜉௧)𝑚௧൰ଶ 𝐵ଶ(𝑡, 𝜉௧) + 𝜎௣ଶ൩ 𝑑𝑡
= ൥[𝐴(𝑡, 𝜉௧)𝑚௧]ଶ𝜎௣ଶ𝐵ଶ(𝑡, 𝜉௧)𝜇௣4ൣ𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ൧ଶ + 𝜇௣൩ 𝑑𝑡
ඨ൥[𝐴(𝑡, 𝜉௧)𝑚௧]ଶ𝜎௣ସ𝐵ଶ(𝑡, 𝜉௧)4ൣ𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ൧ଶ + 𝜎௣ଶ൩ 𝑑𝑡 . 

(A27) 

Now we are ready to derive the flow-performance relationship. Applying Itô’s Lemma to 

Equation (A21) to derive 𝑑𝑞௧∗, then dividing by 𝑞௧∗ from Equation (A21), we have 

 𝑑𝑞௧∗𝑞௧∗ = 2𝑚௧𝑑𝑚௧ + (𝑑𝑚௧)ଶ𝑚௧ଶ . (A28) 

We note that the above result is valid only if 𝑚௧ > 𝑚௧. If 𝑚௧ ≤ 𝑚௧, then 𝑑𝑞௧∗/𝑞௧∗ = 0. 

Given 𝑚௧ > 𝑚௧, we substitute Equation (4) (for the 𝑑𝑚௧ terms) into Equation (A28), and 

then replace the 𝑑𝑊ഥ௧ term by its definition in Equation (3). We have the flow-performance relationship 

using gross alpha as the performance measure: 
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 𝑑𝑞௧∗𝑞௧∗ = 2𝜎௠(𝛾௧)𝑚௧𝐵(𝑡, 𝜉௧) ൬𝑑𝜉௧𝜉௧ ൰ + 𝜎௠ଶ (𝛾௧)𝑚௧ଶ𝐵ଶ(𝑡, 𝜉௧) ൬𝑑𝜉௧𝜉௧ ൰ଶ+ 2𝑚௧ ቈ(𝑎଴(𝑡, 𝜉௧) + 𝑎ଵ(𝑡, 𝜉௧)𝑚௧) − 𝐴(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝑚௧𝐵(𝑡, 𝜉௧) ቉ 𝑑𝑡. (A29) 

We then substitute Equation (A24) into Equation (A29) and get the flow-performance relationship using 

net alpha as the performance measure: 

 𝑑𝑞௧∗𝑞௧∗ = 𝐴(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝑓𝐵(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ + 𝐴ଶ(𝑡, 𝜉௧)𝜎௠ଶ (𝛾௧)4𝑓ଶ𝐵ଶ(𝑡, 𝜉௧) ൬𝑑𝑆௧𝑆௧ ൰ଶ + 𝑌௧𝑑𝑡, (A30) 

where 

 𝑌௧ = 2𝑚௧ ቈ(𝑎଴(𝑡, 𝜉௧) + 𝑎ଵ(𝑡, 𝜉௧)𝑚௧) − 𝐴(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝑚௧𝐵(𝑡, 𝜉௧) ቉
+ 𝐴(𝑡, 𝜉௧)𝜎௠(𝛾௧)൫𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 2𝑐𝑉𝜎௣ଶ൯𝐵(𝑡, 𝜉௧)൫𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ൯  

= 2𝑎଴(𝑡, 𝜉௧)𝑚௧ + 2𝑎ଵ(𝑡, 𝜉௧) − 𝐴(𝑡, 𝜉௧)𝜎௠(𝛾௧)𝐵(𝑡, 𝜉௧)𝜇௣𝐵ଶ(𝑡, 𝜉௧)𝜇௣ + 𝑐𝑉𝜎௣ଶ . 
(A31) 

Here 𝑌௧ is independent of either 𝑑𝜉௧/𝜉௧ or 𝑑𝑆௧/𝑆௧. 
Q.E.D. 

  



 

8 

2 Simulation Results 

We use simulation to illustrate our equilibrium flow-performance relation under linear–constant 

ability framework [as in BG, Case One)], linear–dynamic ability framework (Case Two), and nonlinear–

dynamic ability framework (Case Three). We assume risk-neutral investors in this illustration. We 

discretize our continuous-time processes into discrete-time processes, setting 𝑑𝑡 = Δ𝑡 to be one month 

and 𝑑𝑊ഥ௧ = Δ𝑊ഥ௧ to follow a normal distribution of mean zero and variance Δ𝑡. 
In our simulation, we use some statistics from our sample of the active equity mutual funds in 

the U.S. market. A detailed description of the sample is in the Data section. In the sample, the average 

annual fund expense, including the 12b-1 fee, is 1.13%; the average monthly net alpha is −0.01%; 

and the standard deviation of the monthly net return is 5.24%. Then, we set our model’s coefficients 

as follows. Our monthly fee 𝑓  is 1.13%/12 = 0.094%  (which is approximated by the average 

monthly fund expense); our initial expected management ability 𝑚଴  is 1.13% − 0.01% = 1.12% 

(which is approximated by the average fund gross alpha in our sample); and our gross fund share price 𝜉଴ = 1. We set other coefficients under three cases: 

• Case One: 𝑎଴ = 0, 𝑎ଵ = 0, 𝑏ଵ = 0, 𝑏ଶ = 0, 𝐴 = 1, 𝐵 = 0.0524, 𝛾଴ = 0.0008. 

• Case Two: 𝑎଴ = 0, 𝑎ଵ = 0, 𝑏ଵ = 0.04, 𝑏ଶ = 0.001, 𝐴 = 0.01, 𝐵 = 0.0524, 𝛾଴ = 0.0001. 

• Case Three: 𝑎଴ = 0 , 𝑎ଵ = 0 , 𝑏ଵ = 0.0005 + 0.000012𝑡 + 0.000004ln(1 + 𝜉௧) , 𝑏ଶ =0.0001, 𝐴 = 0.55 + 0.001ln(1 + 𝜉௧), 𝐵 = 0.1 − 0.01ln(𝑡) + 0.01ln(1 + 𝜉௧), 𝛾଴ = 0.001. 

We then simulate 𝑚௧, 𝛾௧, 𝜎௠(𝛾௧), fund net alphas Δ𝑆௧/𝑆௧, and fund flows Δ𝑞௧∗/𝑞௧∗. We plot 

the results of 𝜎௠(𝛾௧) in the three cases, from Month 1 to Month 300, in Figure A1. Also, in Figure A1, 

we use blue circles to plot the values of fund flows and fund net alphas from Month 13 to Month 36, 

green stars to plot these values from Month 61 to Month 84, and red plus signs to plot these values from 

Month 241 to Month 264. 

Case One is the case in BG, where the estimation of constant manager ability become more and 

more precise over time. In this case, 𝜎௠(𝛾௧) is deterministic and decreasing over time. With more 

precise ability estimates, investors rely less and less on realized performance to infer ability; 

consequently, the conditional expected manager ability is less and less sensitive to shocks to gross 

alphas. As a result, the flow–net alpha sensitivity decreases over time. 

Case Two is the case of a linear–dynamic ability framework. We choose the value of 𝛾଴ to be 

below the steady state value of 𝛾௧, and over time, 𝛾௧ increases towards its steady state value. In this 

case, 𝜎௠(𝛾௧)  is deterministic and increasing over time, i.e., the inferred ability is more and more 

sensitive to new shocks to gross alphas. Consequently, the flow–net alpha sensitivity increases over 

time. If we set the value of 𝛾଴ to be above the steady state value of 𝛾௧, then 𝛾௧ decreases over time 

toward its steady state value. Consequently, 𝜎௠(𝛾௧)  decreases over time and the flow–net alpha 

sensitivity decreases over time. 
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Case Three is the case of a nonlinear–dynamic ability framework. 𝜎௠(𝛾௧) is stochastic, and it 

first decreases over time and then increases, i.e., the inferred ability is less and less sensitive to new 

shocks to gross alphas over the early months and then becomes more and more sensitive over the later 

months. Also, as some coefficients are functions of 𝜉௧, the randomness of 𝜉௧ affects 𝜎௠(𝛾௧)’s value, 

making it fluctuate slightly over time. Eventually, the flow–net alpha sensitivity first decreases and then 

increases. 

Different from the results in BG that the flow–net alpha sensitivity decreases monotonically 

over time, our results show that it can change with different patterns over time. In reality, we expect 

that the pattern of 𝜎௠(𝛾௧) over time and that of the flow–net alpha sensitivity may be complex. 

Next, we impose the survival ability level 𝑚 = 0 , such that if 𝑚௧ < 0 , the fund exits the 

market. We show the results of 𝑚௧ and funds’ exit density in Figure A2. In Case One, as the manager 

ability is constant, its estimate 𝑚௧ converges to the true ability level very quickly. As this level is 

positive, the fund never exits the market, and the exit density is zero over time. In Case Two, the 

manager ability is dynamic, resulting in a more volatile 𝑚௧. Over time, when 𝑚௧ decreases and close 

to zero, the exit density surges. The fund exits the market in Month 121, and the exit density is very 

high in the previous few months. In Case Three, the manager ability is dynamic and associated with 

gross alpha in a nonlinear framework. Over time, 𝑚௧ is volatile and starts to decrease after around 280 

months. The fund exits the market even when it is very old (in Month 343). Thus, these results show 

that under our nonlinear–dynamic ability framework, old funds can still exit the market, which is 

different from the prediction of BG that old funds are very unlikely to exit the market. 
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Figure A1. Simulation Results of Fund Flows and Performances 

Figure A1 illustrates the simulation results using coefficients defined in Case One, Case Two, and Case 

Three, in the two subplots on the top, two subplots in the middle, and two subplots at the bottom, 

respectively. For each case, on the left-hand side, we illustrate the sensitivity of expected manager 

ability to shocks in gross alphas, 𝜎௠(𝛾௧), from Month 1 to Month 300; and on the right-hand side, we 

illustrate the fund flows (vertical axis) and fund net alpha (horizontal axis) from Month 13 to Month 36 

in blue circles, from Month 61 to Month 84 in green stars, and from Month 241 to Month 264 in red 

plus signs. 
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Figure A2. Simulation Results of Fund Exit Densities 
Figure A2 illustrates the simulation results using coefficients defined in Case One, Case Two, and Case 

Three, in the two subplots on the top, two subplots in the middle, and two subplots at the bottom, 

respectively. For each case, on the left-hand side, we illustrate the expected manager ability, 𝑚௧; and 

on the right-hand side, we illustrate the density that the fund will exit in the next month. In Case One, 

the fund never exits, and we plot the results from Month 1 to Month 300. In Case Two (Case Three), 

the fund exits in Month 121 (Month 343), and we plot the results before that time. 
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3 Check for Multicollinearity in the Empirical Study 

As our empirical models in Equations (46) and (47) include many variables and their interaction 

terms, we need to check whether multicollinearity among these variables would bias our results. After 

running these models, we check the postestimation of correlation coefficients of the independent 

variables. Table A1 illustrates such postestimation of the model in Equation (46). 

We can see that the main explanatory variables in this model, 𝛼௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯௝, 𝑗 = 1,2,3,4, 

are highly correlated with each other, because all of them are products of 𝛼௜,௧ିଵ and 𝐴𝑔𝑒௜,௧ିଵ or the 

higher-order terms of 𝐴𝑔𝑒௜,௧ିଵ. This type of multicollinearity is structural multicollinearity and does 

not affect the analysis of how 𝐴𝑔𝑒௜,௧ିଵ  affects the flow–net alpha sensitivities. Also, the main 

explanatory variables 𝛼௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯௝ , 𝑗 = 1,2,3,4  have very low correlations with other 

independent variables in the model, which also shows that multicollinearity is not a concern in our 

model. 

We also do a similar check for the model in Equation (47), and find that the main explanatory 

variables in this model, 𝛼௜,௧ିଵ𝑃𝑜𝑠௜,௧ିଵ൫𝐴𝑔𝑒௜,௧ିଵ൯௝, 𝑗 = 1,2,3,4, are highly correlated with each other 

by construction, but have very low correlations with other independent variables in the model. Thus, 

multicollinearity is not a concern in this model. To save space, this result is not reported here. 
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Table A1. Correlation Coefficients of Independent Variables 
Table A1 shows the pairwise correlation coefficients of independent variables in the model of Equation (46). 

Alpha Alpha
*Age

Alpha
*Age 2

Alpha
*Age 3

Alpha
*Age 4 Age Age 2 Age 3 Age 4 Alpha*

lnTNA
Alpha
*Vol

Alpha
*Disp

Alpha
*Mod

Alpha
*EPU

lnTNA Vol Disp Mod EPU Expen
se

TurnO
ver

StyleF
low

Flow FamAl
pha

lnFam
Size

Const
ant

Alpha 1.0000           
Alpha*Age -0.6152 1.0000           
Alpha*Age 2 0.5669 -0.9742 1.0000           
Alpha*Age 3 -0.5315 0.9314 -0.9885 1.0000           
Alpha*Age 4 0.5034 -0.8877 0.9648 -0.9932 1.0000           
Age 0.0106 -0.1088 0.1345 -0.1432 0.1413 1.0000           
Age 2 0.0941 -0.1181 0.0869 -0.0632 0.0452 -0.4214 1.0000           
Age 3 -0.0948 0.1017 -0.0764 0.0576 -0.0430 0.3996 -0.9923 1.0000           
Age 4 0.0905 -0.0863 0.0656 -0.0507 0.0386 -0.3784 0.9768 -0.9952 1.0000           
Alpha*lnTNA -0.3013 -0.0714 0.0454 -0.0308 0.0221 -0.0578 0.0511 -0.0517 0.0417 1.0000           
Alpha*Vol -0.5843 0.3383 -0.2058 0.1419 -0.1064 0.1309 -0.0992 0.0908 -0.0781 -0.2183 1.0000           
Alpha*Disp -0.6762 0.2240 -0.1952 0.1801 -0.1712 -0.0339 -0.0132 0.0249 -0.0270 0.0296 0.2477 1.0000
Alpha*Mod -0.4313 -0.0528 0.0983 -0.1215 0.1368 0.0814 -0.0750 0.0843 -0.0842 -0.1437 0.5939 0.3918 1.0000           
Alpha*EPU -0.4066 -0.1883 0.1140 -0.0601 0.0206 0.0375 0.0780 -0.0469 0.0324 0.0252 0.1343 0.4453 0.4610 1.0000           
lnTNA -0.1251 -0.1050 0.1172 -0.1063 0.0906 0.0310 0.2268 -0.2117 0.1935 -0.1482 0.1324 0.3555 0.1543 0.2948 1.0000           
Vol -0.2848 0.1865 -0.1060 0.0611 -0.0325 -0.0488 0.1797 -0.1864 0.1829 0.1647 0.1403 0.4864 0.1198 -0.2519 0.4597 1.0000           
Disp 0.5046 -0.1438 0.0976 -0.0636 0.0356 0.1440 -0.2227 0.2105 -0.1972 -0.2803 -0.2438 -0.5919 -0.3690 -0.1281 -0.4254 -0.5747 1.0000           
Mod -0.0827 0.0569 -0.0068 -0.0168 0.0315 -0.1221 -0.1323 0.1479 -0.1511 -0.1886 0.2878 -0.0176 0.1522 0.0655 -0.2318 0.0012 0.3112 1.0000           
EPU -0.1717 0.1032 -0.1540 0.1868 -0.2054 -0.5667 0.1143 -0.0894 0.0730 0.0977 0.0506 -0.0299 0.0840 0.3059 -0.0994 -0.1646 -0.0613 0.3723 1.0000           
Expense -0.1184 -0.0142 0.0551 -0.0728 0.0847 -0.1967 -0.1262 0.1242 -0.1324 0.0187 0.1678 0.1783 0.1038 -0.0128 0.3150 0.1923 -0.2334 0.2216 0.2707 1.0000           
TurnOver -0.1119 -0.0094 0.0402 -0.0537 0.0598 0.1092 -0.0040 -0.0104 0.0141 0.4948 0.0774 -0.1274 -0.0162 -0.2155 0.0540 0.3673 -0.1038 0.0175 -0.1710 -0.0498 1.0000           
StyleFlow 0.2703 -0.1079 0.0967 -0.0940 0.0929 0.0243 -0.0271 0.0172 -0.0237 0.1693 -0.3569 -0.3277 -0.4028 -0.1806 -0.0202 -0.1309 0.0471 -0.2500 0.0018 0.0249 -0.0502 1.0000           
Flow 0.0567 0.0969 -0.1512 0.1813 -0.1988 -0.0754 0.1871 -0.2014 0.2085 0.1209 0.0725 -0.4288 -0.2311 -0.0350 -0.2443 -0.4768 0.3017 -0.0644 -0.0187 -0.2553 0.1633 -0.0813 1.0000           
FamAlpha -0.4053 0.0816 -0.1569 0.1915 -0.2080 -0.3091 0.1154 -0.0895 0.0780 0.1739 -0.2040 0.6168 0.1884 0.5647 0.0172 -0.0006 -0.3432 -0.1482 0.1014 -0.1592 -0.2676 -0.0857 -0.2518 1.0000
lnFamSize -0.0443 0.0402 -0.1117 0.1471 -0.1653 -0.2161 0.1865 -0.1860 0.1859 0.2558 -0.1703 -0.0246 0.0245 0.0224 0.0602 -0.0085 -0.0318 0.0205 0.1117 -0.0565 0.0941 -0.0445 0.0541 0.1367 1.0000           
Constant 0.0126 0.1709 -0.1910 0.1888 -0.1767 -0.8955 0.0823 -0.0677 0.0571 0.0349 -0.1541 -0.0506 -0.1139 -0.1245 -0.3471 -0.1546 0.0275 0.1262 0.5013 0.0400 -0.1591 0.0013 0.1202 0.3243 0.0780 1.0000  


